File size: 8,383 Bytes
8d1ee8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# coding=utf-8
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from typing import List, Literal, Optional

from datasets import DatasetDict, concatenate_datasets, load_dataset

from .configs import DataArguments


DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n'  + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"


def apply_chat_template(
    example, tokenizer, task: Literal["sft", "generation", "rm", "dpo"] = "sft", assistant_prefix="<|assistant|>\n"
):
    def _strip_prefix(s, pattern):
        # Use re.escape to escape any special characters in the pattern
        return re.sub(f"^{re.escape(pattern)}", "", s)

    if task in ["sft", "generation"]:
        messages = example["messages"]
        # We add an empty system message if there is none
        if messages[0]["role"] != "system":
            messages.insert(0, {"role": "system", "content": ""})
        example["text"] = tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True if task == "generation" else False
        )
    elif task == "rm":
        if all(k in example.keys() for k in ("chosen", "rejected")):
            chosen_messages = example["chosen"]
            rejected_messages = example["rejected"]
            # We add an empty system message if there is none
            if chosen_messages[0]["role"] != "system":
                chosen_messages.insert(0, {"role": "system", "content": ""})
            if rejected_messages[0]["role"] != "system":
                rejected_messages.insert(0, {"role": "system", "content": ""})
            example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
            example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
        else:
            raise ValueError(
                f"Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
            )
    elif task == "dpo":
        if all(k in example.keys() for k in ("chosen", "rejected")):
            # Compared to reward modeling, we filter out the prompt, so the text is everything after the last assistant token
            prompt_messages = [[msg for msg in example["chosen"] if msg["role"] == "user"][0]]
            # Insert system message
            if example["chosen"][0]["role"] != "system":
                prompt_messages.insert(0, {"role": "system", "content": ""})
            else:
                prompt_messages.insert(0, example["chosen"][0])
            # TODO: handle case where chosen/rejected also have system messages
            chosen_messages = example["chosen"][1:]
            rejected_messages = example["rejected"][1:]
            example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
            example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
            example["text_prompt"] = tokenizer.apply_chat_template(
                prompt_messages, tokenize=False, add_generation_prompt=True
            )

        example["text_chosen"] = _strip_prefix(example["text_chosen"], assistant_prefix)
        example["text_rejected"] = _strip_prefix(example["text_rejected"], assistant_prefix)
    else:
        raise ValueError(
            f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
        )
    return example


def get_datasets(
    data_config: DataArguments | dict,
    splits: List[str] = ["train", "test"],
    shuffle: bool = True,
) -> DatasetDict:
    """
    Loads one or more datasets with varying training set proportions.

    Args:
        data_config (`DataArguments` or `dict`):
            Dataset configuration and split proportions.
        splits (`List[str]`, *optional*, defaults to `['train', 'test']`):
            Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
        shuffle (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the training data.

    Returns
        [`DatasetDict`]: The dataset dictionary containing the loaded datasets.
    """

    if type(data_config) is DataArguments:
        # Structure of the config to read the datasets and their mix
        # datasets_mixer:
        #     - 'dataset1': 0.5
        #     - 'dataset2': 0.3
        #     - 'dataset3': 0.2
        dataset_mixer = data_config.dataset_mixer
    elif type(data_config) is dict:
        # Structure of the input is:
        #     dataset_mixer = {
        #             "dataset1": 0.5,
        #             "dataset1": 0.3,
        #             "dataset1": 0.2,
        #         }
        dataset_mixer = data_config
    else:
        raise ValueError(f"Data config {data_config} not recognized.")

    raw_datasets = mix_datasets(dataset_mixer, splits=splits, shuffle=shuffle)
    return raw_datasets


def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]] = None, shuffle=True) -> DatasetDict:
    """
    Loads and mixes datasets according to proportions specified in `dataset_mixer`.

    Args:
        dataset_mixer (`dict`):
            Dictionary containing the dataset names and their training proportions. By default, all test proportions are 1.
        splits (Optional[List[str]], *optional*, defaults to `None`):
            Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
        shuffle (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the training data.
    """
    raw_datasets = DatasetDict()
    raw_train_datasets = []
    raw_val_datasets = []
    fracs = []
    for ds, frac in dataset_mixer.items():
        fracs.append(frac)
        for split in splits:
            if "train" in split:
                raw_train_datasets.append(
                    load_dataset(
                        ds,
                        split=split,
                    )
                )
            elif "test" in split:
                raw_val_datasets.append(
                    load_dataset(
                        ds,
                        split=split,
                    )
                )
            else:
                raise ValueError(f"Split type {split} not recognized as one of test or train.")

    if any(frac < 0 for frac in fracs):
        raise ValueError("Dataset fractions cannot be negative.")

    if len(raw_train_datasets) > 0:
        train_subsets = []
        for dataset, frac in zip(raw_train_datasets, fracs):
            train_subset = dataset.select(range(int(frac * len(dataset))))
            train_subsets.append(train_subset)
        if shuffle:
            raw_datasets["train"] = concatenate_datasets(train_subsets).shuffle(seed=42)
        else:
            raw_datasets["train"] = concatenate_datasets(train_subsets)
    # No subsampling for test datasets to enable fair comparison across models
    if len(raw_val_datasets) > 0:
        if shuffle:
            raw_datasets["test"] = concatenate_datasets(raw_val_datasets).shuffle(seed=42)
        else:
            raw_datasets["test"] = concatenate_datasets(raw_val_datasets)

    if len(raw_datasets) == 0:
        raise ValueError(
            f"Dataset {dataset_mixer} not recognized with split {split}. Check the dataset has been correctly formatted."
        )

    return raw_datasets