Spaces:
Sleeping
Sleeping
Update model_utils.py
Browse files- model_utils.py +2 -59
model_utils.py
CHANGED
@@ -14,47 +14,12 @@
|
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
|
17 |
-
from
|
18 |
-
|
19 |
-
import torch
|
20 |
-
from transformers import AutoTokenizer, BitsAndBytesConfig, PreTrainedTokenizer
|
21 |
-
|
22 |
-
from accelerate import Accelerator
|
23 |
-
from huggingface_hub import list_repo_files
|
24 |
-
from peft import LoraConfig, PeftConfig
|
25 |
|
26 |
from .configs import DataArguments, ModelArguments
|
27 |
from .data import DEFAULT_CHAT_TEMPLATE
|
28 |
|
29 |
|
30 |
-
def get_current_device() -> int:
|
31 |
-
"""Get the current device. For GPU we return the local process index to enable multiple GPU training."""
|
32 |
-
return Accelerator().local_process_index if torch.cuda.is_available() else "cpu"
|
33 |
-
|
34 |
-
|
35 |
-
def get_kbit_device_map() -> Dict[str, int] | None:
|
36 |
-
"""Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`"""
|
37 |
-
return {"": get_current_device()} if torch.cuda.is_available() else None
|
38 |
-
|
39 |
-
|
40 |
-
def get_quantization_config(model_args) -> BitsAndBytesConfig | None:
|
41 |
-
if model_args.load_in_4bit:
|
42 |
-
quantization_config = BitsAndBytesConfig(
|
43 |
-
load_in_4bit=True,
|
44 |
-
bnb_4bit_compute_dtype=torch.float16, # For consistency with model weights, we use the same value as `torch_dtype` which is float16 for PEFT models
|
45 |
-
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
|
46 |
-
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
|
47 |
-
)
|
48 |
-
elif model_args.load_in_8bit:
|
49 |
-
quantization_config = BitsAndBytesConfig(
|
50 |
-
load_in_8bit=True,
|
51 |
-
)
|
52 |
-
else:
|
53 |
-
quantization_config = None
|
54 |
-
|
55 |
-
return quantization_config
|
56 |
-
|
57 |
-
|
58 |
def get_tokenizer(model_args: ModelArguments, data_args: DataArguments) -> PreTrainedTokenizer:
|
59 |
"""Get the tokenizer for the model."""
|
60 |
tokenizer = AutoTokenizer.from_pretrained(
|
@@ -76,26 +41,4 @@ def get_tokenizer(model_args: ModelArguments, data_args: DataArguments) -> PreTr
|
|
76 |
elif tokenizer.chat_template is None:
|
77 |
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
|
78 |
|
79 |
-
return tokenizer
|
80 |
-
|
81 |
-
|
82 |
-
def get_peft_config(model_args: ModelArguments) -> PeftConfig | None:
|
83 |
-
if model_args.use_peft is False:
|
84 |
-
return None
|
85 |
-
|
86 |
-
peft_config = LoraConfig(
|
87 |
-
r=model_args.lora_r,
|
88 |
-
lora_alpha=model_args.lora_alpha,
|
89 |
-
lora_dropout=model_args.lora_dropout,
|
90 |
-
bias="none",
|
91 |
-
task_type="CAUSAL_LM",
|
92 |
-
target_modules=model_args.lora_target_modules,
|
93 |
-
modules_to_save=model_args.lora_modules_to_save,
|
94 |
-
)
|
95 |
-
|
96 |
-
return peft_config
|
97 |
-
|
98 |
-
|
99 |
-
def is_adapter_model(model_name_or_path: str, revision: str = "main") -> bool:
|
100 |
-
repo_files = list_repo_files(model_name_or_path, revision=revision)
|
101 |
-
return "adapter_model.safetensors" in repo_files or "adapter_model.bin" in repo_files
|
|
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
|
17 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
from .configs import DataArguments, ModelArguments
|
20 |
from .data import DEFAULT_CHAT_TEMPLATE
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def get_tokenizer(model_args: ModelArguments, data_args: DataArguments) -> PreTrainedTokenizer:
|
24 |
"""Get the tokenizer for the model."""
|
25 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
41 |
elif tokenizer.chat_template is None:
|
42 |
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
|
43 |
|
44 |
+
return tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|