rishiraj commited on
Commit
ebba9fe
1 Parent(s): a189428

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -2
app.py CHANGED
@@ -1,4 +1,5 @@
1
- import DataArguments, ModelArguments, apply_chat_template, get_datasets, get_tokenizer
 
2
 
3
  data_args = DataArguments(chat_template=None, dataset_mixer={'HuggingFaceH4/no_robots': 1.0}, dataset_splits=['train_sft', 'test_sft'], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None)
4
  model_args = ModelArguments(base_model_revision=None, model_name_or_path='mistralai/Mistral-7B-v0.1', model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False)
@@ -21,4 +22,37 @@ tokenizer = get_tokenizer(model_args, data_args)
21
  #####################
22
  raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"})
23
  train_dataset = raw_datasets["train"]
24
- eval_dataset = raw_datasets["test"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from . import DataArguments, ModelArguments, apply_chat_template, get_datasets, get_tokenizer
3
 
4
  data_args = DataArguments(chat_template=None, dataset_mixer={'HuggingFaceH4/no_robots': 1.0}, dataset_splits=['train_sft', 'test_sft'], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None)
5
  model_args = ModelArguments(base_model_revision=None, model_name_or_path='mistralai/Mistral-7B-v0.1', model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False)
 
22
  #####################
23
  raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"})
24
  train_dataset = raw_datasets["train"]
25
+ eval_dataset = raw_datasets["test"]
26
+
27
+ with gr.Blocks() as demo:
28
+ gr.Markdown("## AutoTrain Merge Adapter")
29
+ gr.Markdown("Please duplicate this space and attach a GPU in order to use it.")
30
+ token = gr.Textbox(
31
+ label="Hugging Face Write Token",
32
+ value="",
33
+ lines=1,
34
+ max_lines=1,
35
+ interactive=True,
36
+ type="password",
37
+ )
38
+ base_model = gr.Textbox(
39
+ label="Base Model (e.g. meta-llama/Llama-2-7b-chat-hf)",
40
+ value="",
41
+ lines=1,
42
+ max_lines=1,
43
+ interactive=True,
44
+ )
45
+ trained_adapter = gr.Textbox(
46
+ label="Trained Adapter Model (e.g. username/autotrain-my-llama)",
47
+ value="",
48
+ lines=1,
49
+ max_lines=1,
50
+ interactive=True,
51
+ )
52
+ submit = gr.Button(value="Merge & Push")
53
+ op = gr.Markdown(interactive=False)
54
+ submit.click(merge, inputs=[base_model, trained_adapter, token], outputs=[op])
55
+
56
+
57
+ if __name__ == "__main__":
58
+ demo.launch()