import gradio as gr from . import DataArguments, ModelArguments, apply_chat_template, get_datasets, get_tokenizer def template(base_model, trained_adapter, token): data_args = DataArguments(chat_template=None, dataset_mixer={'HuggingFaceH4/no_robots': 1.0}, dataset_splits=['train_sft', 'test_sft'], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None) model_args = ModelArguments(base_model_revision=None, model_name_or_path='mistralai/Mistral-7B-v0.1', model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False) ############### # Load datasets ############### raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits) logger.info( f"Training on the following datasets and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}" ) ################ # Load tokenizer ################ tokenizer = get_tokenizer(model_args, data_args) ##################### # Apply chat template ##################### raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"}) train_dataset = raw_datasets["train"] eval_dataset = raw_datasets["test"] with gr.Blocks() as demo: gr.Markdown("## AutoTrain Merge Adapter") gr.Markdown("Please duplicate this space and attach a GPU in order to use it.") token = gr.Textbox( label="Hugging Face Write Token", value="", lines=1, max_lines=1, interactive=True, type="password", ) base_model = gr.Textbox( label="Base Model (e.g. meta-llama/Llama-2-7b-chat-hf)", value="", lines=1, max_lines=1, interactive=True, ) trained_adapter = gr.Textbox( label="Trained Adapter Model (e.g. username/autotrain-my-llama)", value="", lines=1, max_lines=1, interactive=True, ) submit = gr.Button(value="Merge & Push") op = gr.Markdown(interactive=False) submit.click(merge, inputs=[base_model, trained_adapter, token], outputs=[op]) if __name__ == "__main__": demo.launch()