from huggingface_hub import InferenceClient import gradio as gr import os import re import requests import random import http.client import typing import urllib.request import vertexai from vertexai.generative_models import GenerativeModel, Image with open(".config/application_default_credentials.json", 'w') as file: file.write(str(os.getenv('credentials'))) vertexai.init(project=os.getenv('project_id')) model = GenerativeModel("gemini-1.0-pro-vision") client = InferenceClient("google/gemma-7b-it") def extract_image_urls(text): url_regex = r"(https?:\/\/.*\.(?:png|jpg|jpeg|gif|webp|svg))" image_urls = re.findall(url_regex, text, flags=re.IGNORECASE) valid_image_url = "" for url in image_urls: try: response = requests.head(url) # Use HEAD request for efficiency if response.status_code in range(200, 300) and 'image' in response.headers.get('content-type', ''): valid_image_url = url except requests.exceptions.RequestException: pass # Ignore inaccessible URLs return valid_image_url def load_image_from_url(image_url: str) -> Image: with urllib.request.urlopen(image_url) as response: response = typing.cast(http.client.HTTPResponse, response) image_bytes = response.read() return Image.from_bytes(image_bytes) def search(url): image = load_image_from_url(url) response = model.generate_content([image,"Describe what is shown in this image."]) return response.text def format_prompt(message, history, cust_p): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" prompt+=cust_p.replace("USER_INPUT",message) return prompt def chat_inf(system_prompt,prompt,history,memory,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p): hist_len=0 if not history: history = [] hist_len=0 if not memory: memory = [] mem_len=0 if memory: for ea in memory[0-chat_mem:]: hist_len+=len(str(ea)) in_len=len(system_prompt+prompt)+hist_len if (in_len+tokens) > 8000: history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value")) yield history,memory else: generate_kwargs = dict( temperature=temp, max_new_tokens=tokens, top_p=top_p, repetition_penalty=rep_p, do_sample=True, seed=seed, ) image = extract_image_urls(prompt) if image: image_description = "Image Description: " + search(image) prompt = prompt.replace(image, image_description) print(prompt) if system_prompt: formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p) else: formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text yield [(prompt,output)],memory history.append((prompt,output)) memory.append((prompt,output)) yield history,memory def clear_fn(): return None,None,None,None rand_val=random.randint(1,1111111111111111) def check_rand(inp,val): if inp==True: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111)) else: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) with gr.Blocks(theme=gr.themes.Soft()) as app: memory=gr.State() gr.HTML("""

Gemma Gemini Multimodal Chatbot


Gemini Sprint submission by Rishiraj Acharya. Uses Google's Gemini 1.0 Pro Vision multimodal model from Vertex AI with Google's Gemma 7B Instruct model from Hugging Face. Google Cloud credits are provided for this project.

""") chat_b = gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False) with gr.Group(): inp = gr.Textbox(label="Prompt") sys_inp = gr.Textbox(label="System Prompt (optional)") with gr.Accordion("Settings",open=False): custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="userUSER_INPUTmodel") rand = gr.Checkbox(label="Random Seed", value=True) seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val) tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49) top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49) rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99) chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4) btn = gr.Button("Chat") stop_btn = gr.Button("Stop") clear_btn = gr.Button("Clear") chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory]) go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory]) stop_btn.click(None,None,None,cancels=[go,chat_sub]) clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory]) app.queue(default_concurrency_limit=10).launch()