File size: 17,861 Bytes
8bf58fb 806b207 5011a98 4dfa7ec 806b207 9a59f66 3fb4b8a 9a59f66 65dcf34 7e45574 5011a98 806b207 907b68f b3f8c65 806b207 762e024 806b207 925412a 806b207 e9f0d9a 40024ad deb59b3 806b207 deb59b3 806b207 f1b3a59 762e024 86ae097 83db2f9 f087128 12424b1 f087128 12424b1 f087128 12424b1 f087128 12424b1 f087128 806b207 f087128 762e024 f087128 806b207 8bf58fb 806b207 762e024 1602d86 b25077f 1602d86 b25077f 0ddb8ec 044b65e 806b207 3df9607 762e024 25d5179 dd50ef0 5bc5c9d e5c6642 5bc5c9d dd50ef0 25d5179 529a155 0ddb8ec 26eecfd 83db2f9 b84a68a 26eecfd deb59b3 806b207 deb59b3 0ddb8ec deb59b3 762e024 044b65e 762e024 044b65e 762e024 044b65e 762e024 044b65e 1e07071 044b65e 1e07071 044b65e 1e07071 044b65e 8bf58fb 044b65e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import gradio as gr
import os
hftoken = os.environ["hftoken"]
from langchain_huggingface import HuggingFaceEndpoint
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# repo_id = "google/gemma-2-9b-it"
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" # answers the question well, but continues the text and does not stop when its necessary. often ends in incomplete responses.
# repo_id = "mistralai/Mixtral-8x22B-Instruct-v0.1"
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 256, temperature = 0.7, huggingfacehub_api_token = hftoken, top_p=0.9)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
# from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# from langchain_huggingface import HuggingFaceEmbeddings
# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
model = "BAAI/bge-m3"
model = "BAAI/bge-large-en-v1.5"
embeddings = HuggingFaceEndpointEmbeddings()
# embeddings = HuggingFaceEmbeddings(model = model)
vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
retriever = vectorstore.as_retriever()
# from langchain.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("""Given the following context and a question, generate a complete and detailed answer with finished sentences based on the provided context only.
In your answer, try to use as much text as possible from the "response" section in the source document context without making significant changes.
If someone asks "Who are you?" or a similar question, reply with "My name is Chitti, a chatbot. I'm Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord at https://discord.gg/6ezpZGeCcM or email rishi@aiotsmartlabs.com." Do not attempt to make up an answer.
CONTEXT: {context}
QUESTION: {question}""")
# prompt = ChatPromptTemplate.from_template("""As an AI assistant for AIoT SMART Labs, your task is to provide accurate answers based on the given context.
# 1. **Use the context:** Generate an answer based only on the context provided. Try to use as much text as possible from the "response" section in the source document without making significant changes.
# 2. **Identify yourself:** If someone asks "Who are you?" or a similar question, reply with "I am Rishi's assistant built using a Large Language Model!"
# 3. **Handle unknowns:** If you cannot find the answer in the context, state "I don't know. Please ask Rishi on Discord at https://discord.gg/6ezpZGeCcM or email rishi@aiotsmartlabs.com." Do not make up an answer.
# 4. **Clarity and brevity:** Ensure your answers are clear and concise.
# CONTEXT: {context}
# QUESTION: {question}""")
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# def warmup_model():
# dummy_context = {"context": "dummy context", "question": "dummy question"}
# rag_chain.invoke(dummy_context)
# # Call the warm-up function during startup
# warmup_model()
# Define the chat response function
def chatresponse(message, history):
output = rag_chain.invoke(message)
response = output.split('ANSWER: ')[-1].strip()
return response
# css_code='body{background-image:url("https://picsum.photos/seed/picsum/200/300");}'
# css = ".gradio-container {background: url('file=https://i.imgur.com/u8isIYl.png')}"
# css = ".gradio-container {background: url('file=https://i.imgur.com/rwk7ykG.png')}"
# css = ".gradio-container {background: url('file=https://i.imgur.com/LAfi4yx.png')}"
# Launch the Gradio chat interface
gr.ChatInterface(
chatresponse,
textbox = gr.Textbox(placeholder="Type in your message"),
title = "Chitti Chatbot: AIoT SMART Labs Assistant",
description = "Ask Chitti any question about the organization, program, or projects. I'm using a free API with rate limits, so response may be slow sometimes",
examples = ["What is the IoT Summer Program?", "I'm a 9th grader. Am I eligible for the program?", "What are the dates for the online & live batches?",
"What projects do we do in this summer program?", "What accounts do we need to create for the IoT Summer Program 2024"],
theme = "base",
).launch()
# import gradio as gr
# from langchain_community.document_loaders import CSVLoader # Changed import
# from langchain_community.vectorstores import FAISS # Changed import
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.llms import HuggingFaceLLM # Adjusted for correct instantiation
# import warnings
# from huggingface_hub import login
# import os
# from transformers import pipeline
# # Initialize the LLM using pipeline
# llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct") # Adjusted initialization
# # Load CSV file
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column='prompt')
# data = loader.load()
# # Suppress warnings
# warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
# # Embedding model
# model_name = "BAAI/bge-m3"
# instructor_embeddings = HuggingFaceLLM(model_name=model_name) # Adjusted for correct instantiation
# # Create FAISS vector store from documents
# vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
# retriever = vectordb.as_retriever()
# # Define the prompt template
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template=prompt_template, input_variables=["context", "question"]
# )
# # Initialize the RetrievalQA chain
# chain = RetrievalQA.from_chain_type(llm=llm, # Adjusted initialization
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs={"prompt": PROMPT})
# # Define the chat response function
# def chatresponse(message, history):
# output = chain(message)
# return output['result']
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# # from langchain.llms import GooglePalm
# from langchain_google_genai import GoogleGenerativeAI
# from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# import warnings
# from huggingface_hub import login
# import os
# from transformers import pipeline
# llm = pipeline("feature-extraction", model="mixedbread-ai/mxbai-embed-large-v1")
# # from transformers import AutoModel
# # llm = AutoModel.from_pretrained("Alibaba-NLP/gte-large-en-v1.5", trust_remote_code=True)
# # LLAMA
# # from transformers import AutoModelForCausalLM, AutoTokenizer
# # from transformers import pipeline
# # hf_token = os.environ['llama_token']
# # login(token=hf_token)
# # llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")
# # llm = pipeline("text-generation", model = "meta-llama/Meta-Llama-3-70B-Instruct")
# # MISTRAL
# # llm = pipeline("text-generation", model="mistralai/Mixtral-8x22B-Instruct-v0.1")
# # TO USE GOOGLE MODELS
# # api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
# # llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
# # llm = GooglePalm(google_api_key = api_key, temperature=0.7)
# # LOADING CSV FILE
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# # SUPPRESSING WARNINGS
# warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
# # EMBEDDING MODEL
# model_name = "BAAI/bge-m3"
# instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)
# # Create FAISS vector store from documents
# vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
# retriever = vectordb.as_retriever()
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template = prompt_template, input_variables = ["context", "question"]
# )
# chain = RetrievalQA.from_chain_type(llm = llm,
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs = {"prompt": PROMPT})
# def chatresponse(message, history):
# output = chain(message)
# return output['result']
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# # from langchain.llms import GooglePalm
# # from langchain.document_loaders.csv_loader import CSVLoader
# # from langchain_huggingface import HuggingFaceEmbeddings
# # from langchain.vectorstores import FAISS
# from langchain_community.llms import GooglePalm
# from langchain_community.document_loaders import CSVLoader
# from langchain_community.vectorstores import FAISS
# from langchain_huggingface import HuggingFaceEmbeddings
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
# retriever = vectordb.as_retriever()
# from langchain.prompts import PromptTemplate
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template = prompt_template, input_variables = ["context", "question"]
# )
# from langchain.chains import RetrievalQA
# chain = RetrievalQA.from_chain_type(llm = llm,
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs = {"prompt": PROMPT})
# def chatresponse(message, history):
# output = chain(message)
# return output['result']
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from langchain.llms import GooglePalm
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
# from langchain.document_loaders.csv_loader import CSVLoader
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# # instructor_embeddings = HuggingFaceEmbeddings()
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
# # e = embeddings_model.embed_query("What is your refund policy")
# retriever = vectordb.as_retriever()
# from langchain.prompts import PromptTemplate
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""
# PROMPT = PromptTemplate(
# template = prompt_template, input_variables = ["context", "question"]
# )
# from langchain.chains import RetrievalQA
# chain = RetrievalQA.from_chain_type(llm = llm,
# chain_type="stuff",
# retriever=retriever,
# input_key="query",
# return_source_documents=True,
# chain_type_kwargs = {"prompt": PROMPT})
# # Load your LLM model and necessary components
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
# # For this example, we'll assume the model and chain function are already available
# def chatbot(query):
# response = chain(query)
# # Extract the 'result' part of the response
# result = response.get('result', 'Sorry, I could not find an answer.')
# return result
# # Define the Gradio interface
# iface = gr.Interface(
# fn=chatbot, # Function to call
# inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type
# outputs="text", # Output type
# title="Hugging Face LLM Chatbot",
# description="Ask any question related to the documents and get an answer from the LLM model.",
# )
# # Launch the interface
# iface.launch()
# # Save this file as app.py and push it to your Hugging Face Space repository
# # import gradio as gr
# # def greet(name, intensity):
# # return "Hello, " + name + "!" * int(intensity)
# # demo = gr.Interface(
# # fn=greet,
# # inputs=["text", "slider"],
# # outputs=["text"],
# # )
# # demo.launch()
# # import gradio as gr
# # from huggingface_hub import InferenceClient
# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # ):
# # messages = [{"role": "system", "content": system_message}]
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # messages.append({"role": "user", "content": message})
# # response = ""
# # for message in client.chat_completion(
# # messages,
# # max_tokens=max_tokens,
# # stream=True,
# # temperature=temperature,
# # top_p=top_p,
# # ):
# # token = message.choices[0].delta.content
# # response += token
# # yield response
# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# # respond,
# # additional_inputs=[
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# # gr.Slider(
# # minimum=0.1,
# # maximum=1.0,
# # value=0.95,
# # step=0.05,
# # label="Top-p (nucleus sampling)",
# # ),
# # ],
# # )
# # if __name__ == "__main__":
# # demo.launch()
|