ritaycw commited on
Commit
2a4ebc7
·
verified ·
1 Parent(s): 18f599f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -131
app.py CHANGED
@@ -1,147 +1,117 @@
1
- import io
2
- import random
3
- from typing import List, Tuple
4
-
5
- import aiohttp
6
  import panel as pn
7
- from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
 
9
 
10
- pn.extension(design="bootstrap", sizing_mode="stretch_width")
 
11
 
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
 
 
 
 
 
20
 
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
 
 
 
 
 
 
28
 
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
 
 
37
 
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
 
 
42
 
 
 
43
 
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
- )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### ⚙ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### 😔 Something went wrong, please try a different URL!"
76
- return
77
-
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
-
81
- # build the results column
82
- results = pn.Column("##### 🎉 Here are the results!", img)
83
-
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
-
100
-
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
-
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
 
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
 
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
124
- )
125
 
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
-
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
  )
140
 
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # load up the libraries
 
 
 
 
2
  import panel as pn
3
+ import pandas as pd
4
+ import altair as alt
5
+ from vega_datasets import data
6
 
7
+ # we want to use bootstrap/template, tell Panel to load up what we need
8
+ pn.extension(design='bootstrap')
9
 
10
+ # we want to use vega, tell Panel to load up what we need
11
+ pn.extension('vega')
 
 
 
 
 
12
 
13
+ # create a basic template using bootstrap
14
+ template = pn.template.BootstrapTemplate(
15
+ title='SI649 Walkthrough',
16
+ )
17
 
18
+ # the main column will hold our key content
19
+ maincol = pn.Column()
 
 
 
 
20
 
21
+ # add some markdown to the main column
22
+ maincol.append("# Markdown Title")
23
+ maincol.append("I can format in cool ways. Like **bold** or *italics* or ***both*** or ~~strikethrough~~ or `code` or [links](https://panel.holoviz.org)")
24
+ maincol.append("I am writing a link [to the streamlit documentation page](https://docs.streamlit.io/en/stable/api.html)")
25
+ maincol.append('![alt text](https://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Irises-Vincent_van_Gogh.jpg/314px-Irises-Vincent_van_Gogh.jpg)')
26
 
27
+ # load up a dataframe and show it in the main column
28
+ cars_url = "https://raw.githubusercontent.com/altair-viz/vega_datasets/master/vega_datasets/_data/cars.json"
29
+ cars = pd.read_json(cars_url)
30
+ temps = data.seattle_weather()
 
 
 
31
 
32
+ maincol.append(temps.head(10))
33
 
34
+ # create a basic chart
35
+ hp_mpg = alt.Chart(cars).mark_circle(size=80).encode(
36
+ x='Horsepower:Q',
37
+ y='Miles_per_Gallon:Q',
38
+ color='Origin:N'
39
+ )
40
 
41
+ # dispaly it in the main column
42
+ # maincol.append(hp_mpg)
43
 
44
+ # create a basic slider
45
+ simpleslider = pn.widgets.IntSlider(name='Simple Slider', start=0, end=100, value=0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ # generate text based on slider value
48
+ def square(x):
49
+ return f'{x} squared is {x**2}'
 
 
50
 
 
 
 
 
 
51
 
52
+ # bind the slider to the function and hold the output in a row
53
+ row = pn.Column(pn.bind(square,simpleslider))
54
+
55
+ # add both slider and row
56
+ maincol.append(simpleslider)
57
+ maincol.append(row)
58
+
59
+ # variable to track state of visualization
60
+ flip = False
61
+
62
+ # function to either return the vis or a message
63
+ def makeChartVisible(val):
64
+ global flip # grab the variable outside the function
65
+ if (flip == True):
66
+ flip = not flip # flip to False
67
+ return pn.pane.Vega(hp_mpg) # return the vis
68
+ else:
69
+ flip = not flip # flip to true and return text
70
+ return pn.panel("Click the button to see the chart")
71
+
72
+ # add a button and then create the binding
73
+ btn = pn.widgets.Button(name='Click me')
74
+ row = pn.Row(pn.bind(makeChartVisible, btn))
75
+
76
+ # add button and new row to main column
77
+ maincol.append(btn)
78
+ maincol.append(row)
79
+
80
+ # create a base chart
81
+ basechart = alt.Chart(cars).mark_circle(size=80,opacity=0.5).encode(
82
+ x='Horsepower:Q',
83
+ y='Acceleration:Q',
84
+ color="Origin:N"
85
  )
86
 
87
+ # create something to hold the base chart
88
+ currentoption = pn.panel(basechart)
89
+
90
+ # create a selection widget
91
+ select = pn.widgets.Select(name='Select', options=['Horsepower','Acceleration','Miles_per_Gallon'])
92
+
93
+ # create a function to modify the basechart that is being
94
+ # held in currentoption
95
+ def changeOption(val):
96
+ # grab what's there now
97
+ chrt = currentoption.object
98
+ # change the encoding based on val
99
+ chrt = chrt.encode(
100
+ y=val+":Q"
101
+ )
102
+ # replace old chart in currentoption with new one
103
+ currentoption.object = chrt
104
+
105
+ # append the selection
106
+ maincol.append(select)
107
+ # append the binding (in thise case nothing is being returned by changeOption, so...)
108
+ chartchange = pn.Row(pn.bind(changeOption, select))
109
+ # ... we need to also add the chart
110
+ maincol.append(chartchange)
111
+ maincol.append(currentoption)
112
+
113
+ # add the main column to the template
114
+ template.main.append(maincol)
115
+
116
+ # Indicate that the template object is the "application" and serve it
117
+ template.servable(title="SI649 Walkthrough")