# Import required libraries import os import re import logging import whisper from pytube import YouTube import gradio as gr # Setup logging logging.basicConfig(level=logging.INFO) # Load the Whisper model model = whisper.load_model("base") def download_audio_from_youtube(url): """ Download the audio from a YouTube video and return the path to the audio file. """ yt = YouTube(url) video = yt.streams.filter(only_audio=True).first() out_file = video.download(output_path=".") return out_file def get_text(url): """ Transcribe the audio from a YouTube video and return the transcript. """ if not url: return '' out_file = download_audio_from_youtube(url) file_stats = os.stat(out_file) logging.info(f'Size of audio file in Bytes: {file_stats.st_size}') if file_stats.st_size > 30000000: logging.error('Videos for transcription on this space are limited to about 1.5 hours...') return '' base, ext = os.path.splitext(out_file) new_file = base + '.mp3' os.rename(out_file, new_file) result = model.transcribe(new_file) return result['text'].strip() def create_gradio_interface(): """ Create and launch a Gradio interface for transcribing YouTube videos. """ with gr.Blocks() as demo: gr.Markdown("