Spaces:
Running
Running
import asyncio | |
import string | |
from collections import Counter | |
from itertools import count, tee | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import torch | |
from PIL import Image | |
from transformers import DetrImageProcessor, TableTransformerForObjectDetection | |
from vietocr.tool.config import Cfg | |
from vietocr.tool.predictor import Predictor | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
st.set_page_config(layout='wide') | |
st.title("Table Detection and Table Structure Recognition") | |
st.write( | |
"Implemented by MSFT team: https://github.com/microsoft/table-transformer") | |
# config = Cfg.load_config_from_name('vgg_transformer') | |
config = Cfg.load_config_from_name('vgg_seq2seq') | |
config['cnn']['pretrained'] = False | |
config['device'] = 'cpu' | |
config['predictor']['beamsearch'] = False | |
detector = Predictor(config) | |
table_detection_model = TableTransformerForObjectDetection.from_pretrained( | |
"microsoft/table-transformer-detection") | |
table_recognition_model = TableTransformerForObjectDetection.from_pretrained( | |
"microsoft/table-transformer-structure-recognition") | |
def PIL_to_cv(pil_img): | |
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) | |
def cv_to_PIL(cv_img): | |
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) | |
async def pytess(cell_pil_img, threshold: float = 0.5): | |
text, prob = detector.predict(cell_pil_img, return_prob=True) | |
if prob < threshold: | |
return "" | |
return text.strip() | |
def sharpen_image(pil_img): | |
img = PIL_to_cv(pil_img) | |
sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) | |
sharpen = cv2.filter2D(img, -1, sharpen_kernel) | |
pil_img = cv_to_PIL(sharpen) | |
return pil_img | |
def uniquify(seq, suffs=count(1)): | |
"""Make all the items unique by adding a suffix (1, 2, etc). | |
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list | |
`seq` is mutable sequence of strings. | |
`suffs` is an optional alternative suffix iterable. | |
""" | |
not_unique = [k for k, v in Counter(seq).items() if v > 1] | |
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique)))) | |
for idx, s in enumerate(seq): | |
try: | |
suffix = str(next(suff_gens[s])) | |
except KeyError: | |
continue | |
else: | |
seq[idx] += suffix | |
return seq | |
def binarizeBlur_image(pil_img): | |
image = PIL_to_cv(pil_img) | |
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1] | |
result = cv2.GaussianBlur(thresh, (5, 5), 0) | |
result = 255 - result | |
return cv_to_PIL(result) | |
def td_postprocess(pil_img): | |
''' | |
Removes gray background from tables | |
''' | |
img = PIL_to_cv(pil_img) | |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
mask = cv2.inRange(hsv, (0, 0, 100), | |
(255, 5, 255)) # (0, 0, 100), (255, 5, 255) | |
nzmask = cv2.inRange(hsv, (0, 0, 5), | |
(255, 255, 255)) # (0, 0, 5), (255, 255, 255)) | |
nzmask = cv2.erode(nzmask, np.ones((3, 3))) # (3,3) | |
mask = mask & nzmask | |
new_img = img.copy() | |
new_img[np.where(mask)] = 255 | |
return cv_to_PIL(new_img) | |
# def super_res(pil_img): | |
# # requires opencv-contrib-python installed without the opencv-python | |
# sr = dnn_superres.DnnSuperResImpl_create() | |
# image = PIL_to_cv(pil_img) | |
# model_path = "./LapSRN_x8.pb" | |
# model_name = model_path.split('/')[1].split('_')[0].lower() | |
# model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1]) | |
# sr.readModel(model_path) | |
# sr.setModel(model_name, model_scale) | |
# final_img = sr.upsample(image) | |
# final_img = cv_to_PIL(final_img) | |
# return final_img | |
def table_detector(image, THRESHOLD_PROBA): | |
''' | |
Table detection using DEtect-object TRansformer pre-trained on 1 million tables | |
''' | |
feature_extractor = DetrImageProcessor(do_resize=True, | |
size=800, | |
max_size=800) | |
encoding = feature_extractor(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = table_detection_model(**encoding) | |
probas = outputs.logits.softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > THRESHOLD_PROBA | |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
postprocessed_outputs = feature_extractor.post_process( | |
outputs, target_sizes) | |
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep] | |
return (probas[keep], bboxes_scaled) | |
def table_struct_recog(image, THRESHOLD_PROBA): | |
''' | |
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables | |
''' | |
feature_extractor = DetrImageProcessor(do_resize=True, | |
size=1000, | |
max_size=1000) | |
encoding = feature_extractor(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = table_recognition_model(**encoding) | |
probas = outputs.logits.softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > THRESHOLD_PROBA | |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
postprocessed_outputs = feature_extractor.post_process( | |
outputs, target_sizes) | |
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep] | |
return (probas[keep], bboxes_scaled) | |
class TableExtractionPipeline(): | |
colors = ["red", "blue", "green", "yellow", "orange", "violet"] | |
# colors = ["red", "blue", "green", "red", "red", "red"] | |
def add_padding(self, | |
pil_img, | |
top, | |
right, | |
bottom, | |
left, | |
color=(255, 255, 255)): | |
''' | |
Image padding as part of TSR pre-processing to prevent missing table edges | |
''' | |
width, height = pil_img.size | |
new_width = width + right + left | |
new_height = height + top + bottom | |
result = Image.new(pil_img.mode, (new_width, new_height), color) | |
result.paste(pil_img, (left, top)) | |
return result | |
def plot_results_detection(self, c1, model, pil_img, prob, boxes, | |
delta_xmin, delta_ymin, delta_xmax, delta_ymax): | |
''' | |
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates | |
''' | |
# st.write('img_obj') | |
# st.write(pil_img) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
cl = p.argmax() | |
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax | |
ax.add_patch( | |
plt.Rectangle((xmin, ymin), | |
xmax - xmin, | |
ymax - ymin, | |
fill=False, | |
color='red', | |
linewidth=3)) | |
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}' | |
ax.text(xmin - 20, | |
ymin - 50, | |
text, | |
fontsize=10, | |
bbox=dict(facecolor='yellow', alpha=0.5)) | |
plt.axis('off') | |
c1.pyplot() | |
def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin, | |
delta_xmax, delta_ymax): | |
''' | |
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates | |
''' | |
cropped_img_list = [] | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax | |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
cropped_img_list.append(cropped_img) | |
return cropped_img_list | |
def generate_structure(self, c2, model, pil_img, prob, boxes, | |
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom): | |
''' | |
Co-ordinates are adjusted here by 3 'pixels' | |
To plot table pillow image and the TSR bounding boxes on the table | |
''' | |
# st.write('img_obj') | |
# st.write(pil_img) | |
plt.figure(figsize=(32, 20)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
rows = {} | |
cols = {} | |
idx = 0 | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax | |
cl = p.argmax() | |
class_text = model.config.id2label[cl.item()] | |
text = f'{class_text}: {p[cl]:0.2f}' | |
# or (class_text == 'table column') | |
if (class_text | |
== 'table row') or (class_text | |
== 'table projected row header') or ( | |
class_text == 'table column'): | |
ax.add_patch( | |
plt.Rectangle((xmin, ymin), | |
xmax - xmin, | |
ymax - ymin, | |
fill=False, | |
color=self.colors[cl.item()], | |
linewidth=2)) | |
ax.text(xmin - 10, | |
ymin - 10, | |
text, | |
fontsize=5, | |
bbox=dict(facecolor='yellow', alpha=0.5)) | |
if class_text == 'table row': | |
rows['table row.' + | |
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax, | |
ymax + expand_rowcol_bbox_bottom) | |
if class_text == 'table column': | |
cols['table column.' + | |
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax, | |
ymax + expand_rowcol_bbox_bottom) | |
idx += 1 | |
plt.axis('on') | |
c2.pyplot() | |
return rows, cols | |
def sort_table_featuresv2(self, rows: dict, cols: dict): | |
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox | |
rows_ = { | |
table_feature: (xmin, ymin, xmax, ymax) | |
for table_feature, ( | |
xmin, ymin, xmax, | |
ymax) in sorted(rows.items(), key=lambda tup: tup[1][1]) | |
} | |
cols_ = { | |
table_feature: (xmin, ymin, xmax, ymax) | |
for table_feature, ( | |
xmin, ymin, xmax, | |
ymax) in sorted(cols.items(), key=lambda tup: tup[1][0]) | |
} | |
return rows_, cols_ | |
def individual_table_featuresv2(self, pil_img, rows: dict, cols: dict): | |
for k, v in rows.items(): | |
xmin, ymin, xmax, ymax = v | |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
rows[k] = xmin, ymin, xmax, ymax, cropped_img | |
for k, v in cols.items(): | |
xmin, ymin, xmax, ymax = v | |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
cols[k] = xmin, ymin, xmax, ymax, cropped_img | |
return rows, cols | |
def object_to_cellsv2(self, master_row: dict, cols: dict, | |
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, | |
padd_left): | |
'''Removes redundant bbox for rows&columns and divides each row into cells from columns | |
Args: | |
Returns: | |
''' | |
cells_img = {} | |
header_idx = 0 | |
row_idx = 0 | |
previous_xmax_col = 0 | |
new_cols = {} | |
new_master_row = {} | |
previous_ymin_row = 0 | |
new_cols = cols | |
new_master_row = master_row | |
## Below 2 for loops remove redundant bounding boxes ### | |
# for k_col, v_col in cols.items(): | |
# xmin_col, _, xmax_col, _, col_img = v_col | |
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col): | |
# print('Found a column with double bbox') | |
# continue | |
# previous_xmax_col = xmax_col | |
# new_cols[k_col] = v_col | |
# for k_row, v_row in master_row.items(): | |
# _, ymin_row, _, ymax_row, row_img = v_row | |
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row): | |
# print('Found a row with double bbox') | |
# continue | |
# previous_ymin_row = ymin_row | |
# new_master_row[k_row] = v_row | |
###################################################### | |
for k_row, v_row in new_master_row.items(): | |
_, _, _, _, row_img = v_row | |
xmax, ymax = row_img.size | |
xa, ya, xb, yb = 0, 0, 0, ymax | |
row_img_list = [] | |
# plt.imshow(row_img) | |
# st.pyplot() | |
for idx, kv in enumerate(new_cols.items()): | |
k_col, v_col = kv | |
xmin_col, _, xmax_col, _, col_img = v_col | |
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left | |
xa = xmin_col | |
xb = xmax_col | |
if idx == 0: | |
xa = 0 | |
if idx == len(new_cols) - 1: | |
xb = xmax | |
xa, ya, xb, yb = xa, ya, xb, yb | |
row_img_cropped = row_img.crop((xa, ya, xb, yb)) | |
row_img_list.append(row_img_cropped) | |
cells_img[k_row + '.' + str(row_idx)] = row_img_list | |
row_idx += 1 | |
return cells_img, len(new_cols), len(new_master_row) - 1 | |
def clean_dataframe(self, df): | |
''' | |
Remove irrelevant symbols that appear with tesseractOCR | |
''' | |
# df.columns = [col.replace('|', '') for col in df.columns] | |
for col in df.columns: | |
df[col] = df[col].str.replace("'", '', regex=True) | |
df[col] = df[col].str.replace('"', '', regex=True) | |
df[col] = df[col].str.replace(']', '', regex=True) | |
df[col] = df[col].str.replace('[', '', regex=True) | |
df[col] = df[col].str.replace('{', '', regex=True) | |
df[col] = df[col].str.replace('}', '', regex=True) | |
return df | |
def convert_df(self, df): | |
return df.to_csv().encode('utf-8') | |
def create_dataframe(self, c3, cell_ocr_res: list, max_cols: int, | |
max_rows: int): | |
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe | |
Args: | |
cell_ocr_res: list of strings, each element representing a cell in a table | |
max_cols, max_rows: number of columns and rows | |
Returns: | |
dataframe : final dataframe after all pre-processing | |
''' | |
headers = cell_ocr_res[:max_cols] | |
new_headers = uniquify(headers, | |
(f' {x!s}' for x in string.ascii_lowercase)) | |
counter = 0 | |
cells_list = cell_ocr_res[max_cols:] | |
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers) | |
cell_idx = 0 | |
for nrows in range(max_rows): | |
for ncols in range(max_cols): | |
df.iat[nrows, ncols] = str(cells_list[cell_idx]) | |
cell_idx += 1 | |
## To check if there are duplicate headers if result of uniquify+col == col | |
## This check removes headers when all headers are empty or if median of header word count is less than 6 | |
for x, col in zip(string.ascii_lowercase, new_headers): | |
if f' {x!s}' == col: | |
counter += 1 | |
header_char_count = [len(col) for col in new_headers] | |
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6): | |
# st.write('woooot') | |
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase)) | |
# df = df.iloc[1:,:] | |
df = self.clean_dataframe(df) | |
c3.dataframe(df) | |
csv = self.convert_df(df) | |
c3.download_button("Download table", | |
csv, | |
"file.csv", | |
"text/csv", | |
key='download-csv-' + df.iloc[0, 0]) | |
return df | |
async def start_process(self, image_path: str, TD_THRESHOLD, TSR_THRESHOLD, | |
OCR_THRESHOLD, padd_top, padd_left, padd_bottom, | |
padd_right, delta_xmin, delta_ymin, delta_xmax, | |
delta_ymax, expand_rowcol_bbox_top, | |
expand_rowcol_bbox_bottom): | |
''' | |
Initiates process of generating pandas dataframes from raw pdf-page images | |
''' | |
image = Image.open(image_path).convert("RGB") | |
probas, bboxes_scaled = table_detector(image, | |
THRESHOLD_PROBA=TD_THRESHOLD) | |
if bboxes_scaled.nelement() == 0: | |
st.write('No table found in the pdf-page image') | |
return '' | |
# try: | |
# st.write('Document: '+image_path.split('/')[-1]) | |
c1, c2, c3 = st.columns((1, 1, 1)) | |
self.plot_results_detection(c1, table_detection_model, image, probas, | |
bboxes_scaled, delta_xmin, delta_ymin, | |
delta_xmax, delta_ymax) | |
cropped_img_list = self.crop_tables(image, probas, bboxes_scaled, | |
delta_xmin, delta_ymin, delta_xmax, | |
delta_ymax) | |
for idx, unpadded_table in enumerate(cropped_img_list): | |
table = self.add_padding(unpadded_table, padd_top, padd_right, | |
padd_bottom, padd_left) | |
# table = super_res(table) | |
# table = binarizeBlur_image(table) | |
# table = sharpen_image(table) # Test sharpen image next | |
# table = td_postprocess(table) | |
# table.save("result"+str(idx)+".png") | |
probas, bboxes_scaled = table_struct_recog( | |
table, THRESHOLD_PROBA=TSR_THRESHOLD) | |
rows, cols = self.generate_structure(c2, table_recognition_model, | |
table, probas, bboxes_scaled, | |
expand_rowcol_bbox_top, | |
expand_rowcol_bbox_bottom) | |
# st.write(len(rows), len(cols)) | |
rows, cols = self.sort_table_featuresv2(rows, cols) | |
master_row, cols = self.individual_table_featuresv2( | |
table, rows, cols) | |
cells_img, max_cols, max_rows = self.object_to_cellsv2( | |
master_row, cols, expand_rowcol_bbox_top, | |
expand_rowcol_bbox_bottom, padd_left) | |
sequential_cell_img_list = [] | |
for k, img_list in cells_img.items(): | |
for img in img_list: | |
# img = super_res(img) | |
# img = sharpen_image(img) # Test sharpen image next | |
# img = binarizeBlur_image(img) | |
# img = self.add_padding(img, 10,10,10,10) | |
# plt.imshow(img) | |
# c3.pyplot() | |
sequential_cell_img_list.append( | |
pytess(cell_pil_img=img, threshold=OCR_THRESHOLD)) | |
cell_ocr_res = await asyncio.gather(*sequential_cell_img_list) | |
self.create_dataframe(c3, cell_ocr_res, max_cols, max_rows) | |
st.write( | |
'Errors in OCR is due to either quality of the image or performance of the OCR' | |
) | |
# except: | |
# st.write('Either incorrectly identified table or no table, to debug remove try/except') | |
# break | |
# break | |
if __name__ == "__main__": | |
img_name = st.file_uploader("Upload an image with table(s)") | |
st1, st2, st3 = st.columns((1, 1, 1)) | |
TD_th = st1.slider('Table detection threshold', 0.0, 1.0, 0.8) | |
TSR_th = st2.slider('Table structure recognition threshold', 0.0, 1.0, 0.7) | |
OCR_th = st3.slider("Text Probs Threshold", 0.0, 1.0, 0.5) | |
st1, st2, st3, st4 = st.columns((1, 1, 1, 1)) | |
padd_top = st1.slider('Padding top', 0, 200, 90) | |
padd_left = st2.slider('Padding left', 0, 200, 40) | |
padd_right = st3.slider('Padding right', 0, 200, 40) | |
padd_bottom = st4.slider('Padding bottom', 0, 200, 90) | |
te = TableExtractionPipeline() | |
# for img in image_list: | |
if img_name is not None: | |
asyncio.run( | |
te.start_process(img_name, | |
TD_THRESHOLD=TD_th, | |
TSR_THRESHOLD=TSR_th, | |
OCR_THRESHOLD=OCR_th, | |
padd_top=padd_top, | |
padd_left=padd_left, | |
padd_bottom=padd_bottom, | |
padd_right=padd_right, | |
delta_xmin=10, # add offset to the left of the table | |
delta_ymin=3, # add offset to the bottom of the table | |
delta_xmax=10, # add offset to the right of the table | |
delta_ymax=3, # add offset to the top of the table | |
expand_rowcol_bbox_top=0, | |
expand_rowcol_bbox_bottom=0)) | |