Spaces:
Sleeping
Sleeping
File size: 4,841 Bytes
70b87af 94f13dc 0a890f4 70b87af 0a890f4 70b87af 0a890f4 94f13dc 0a890f4 a30e1f8 fe57be4 ebe79ef fe57be4 d88faaa a30e1f8 70b87af f5c2b05 70b87af 0a066e6 cad2792 f016c6e 70b87af 4c25792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import json
import gradio as gr
from llama_index.core import (
VectorStoreIndex,
download_loader,
StorageContext
)
from dotenv import load_dotenv, find_dotenv
import chromadb
from llama_index.llms.mistralai import MistralAI
from llama_index.embeddings.mistralai import MistralAIEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core.indices.service_context import ServiceContext
from pathlib import Path
TITLE = "RIZOA-AUCHAN Chatbot Demo"
DESCRIPTION = "Example of an assistant with Gradio, coupling with function calling and Mistral AI via its API"
PLACEHOLDER = (
"Vous pouvez me posez une question sur ce contexte, appuyer sur Entrée pour valider"
)
PLACEHOLDER_URL = "Extract text from this url"
llm_model = "mistral-medium"
load_dotenv()
env_api_key = os.environ.get("MISTRAL_API_KEY")
query_engine = None
# Define LLMs
llm = MistralAI(api_key=env_api_key, model=llm_model)
embed_model = MistralAIEmbedding(model_name="mistral-embed", api_key=env_api_key)
# create client and a new collection
db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
# set up ChromaVectorStore and load in data
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
service_context = ServiceContext.from_defaults(
chunk_size=1024, llm=llm, embed_model=embed_model
)
#PDFReader = download_loader("PDFReader")
#loader = PDFReader()
index = VectorStoreIndex(
[], service_context=service_context, storage_context=storage_context
)
query_engine = index.as_query_engine(similarity_top_k=5)
FILE = Path(__file__).resolve()
BASE_PATH = FILE.parents[0]
image = os.path.join(BASE_PATH,"img","logo_rizoa_auchan.jpg")
print(f"Chemin de l'image : {image}")
image = os.path.join("img","logo_rizoa_auchan.jpg")
print(f"chemin 2 : {image}")
image = os.path.abspath(os.path.join("img", "logo_rizoa_auchan.jpg"))
print(f"Image 3 : {image}")
image = os.path.join("https://huggingface.co/spaces/rizoa-auchan-hack/hack/blob/main/img/logo_rizoa_auchan.jpg")
print(f"Image 4 : {image}")
PLACEHOLDER = (image)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Image(
#value=os.path.join(BASE_PATH,"img","logo_rizoa_auchan.jpg"),
#value=os.path.join("img","logo_rizoa_auchan.jpg"),
value=os.path.join("img","logo_rizoa_auchan.jpg"),
height=250,
width=250,
container=False,
show_download_button=False
)
with gr.Column(scale=4):
gr.Markdown(
"""
# Bienvenue au Chatbot FAIR-PLAI
Ce chatbot est un assistant numérique, médiateur des vendeurs-acheteurs
"""
)
# gr.Markdown(""" ### 1 / Extract data from PDF """)
# with gr.Row():
# with gr.Column():
# input_file = gr.File(
# label="Load a pdf",
# file_types=[".pdf"],
# file_count="single",
# type="filepath",
# interactive=True,
# )
# file_msg = gr.Textbox(
# label="Loaded documents:", container=False, visible=False
# )
# input_file.upload(
# fn=load_document,
# inputs=[
# input_file,
# ],
# outputs=[file_msg],
# concurrency_limit=20,
# )
# file_btn = gr.Button(value="Encode file ✅", interactive=True)
# btn_msg = gr.Textbox(container=False, visible=False)
# with gr.Row():
# db_list = gr.Markdown(value=get_documents_in_db)
# delete_btn = gr.Button(value="Empty db 🗑️", interactive=True, scale=0)
# file_btn.click(
# load_file,
# inputs=[input_file],
# outputs=[file_msg, btn_msg, db_list],
# show_progress="full",
# )
# delete_btn.click(empty_db, outputs=[db_list], show_progress="minimal")
gr.Markdown(""" ### Ask a question """)
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder=PLACEHOLDER)
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
response = query_engine.query(message)
chat_history.append((message, str(response)))
return chat_history
msg.submit(respond, [msg, chatbot], [chatbot])
demo.title = TITLE
if __name__ == "__main__":
demo.launch(allowed_paths=['/home/user/app/img/','./img/'])
|