File size: 4,841 Bytes
70b87af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f13dc
0a890f4
70b87af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a890f4
 
70b87af
 
 
 
 
 
0a890f4
94f13dc
0a890f4
 
a30e1f8
 
fe57be4
 
 
 
ebe79ef
 
fe57be4
d88faaa
a30e1f8
70b87af
 
f5c2b05
70b87af
0a066e6
 
cad2792
f016c6e
70b87af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c25792
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import json
import gradio as gr
from llama_index.core import (
    VectorStoreIndex,
    download_loader,
    StorageContext
)
from dotenv import load_dotenv, find_dotenv

import chromadb

from llama_index.llms.mistralai import MistralAI
from llama_index.embeddings.mistralai import MistralAIEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core.indices.service_context import ServiceContext

from pathlib import Path

TITLE = "RIZOA-AUCHAN Chatbot Demo"
DESCRIPTION = "Example of an assistant with Gradio, coupling with function calling and Mistral AI via its API"
PLACEHOLDER = (
    "Vous pouvez me posez une question sur ce contexte, appuyer sur Entrée pour valider"
)
PLACEHOLDER_URL = "Extract text from this url"
llm_model = "mistral-medium"

load_dotenv()
env_api_key = os.environ.get("MISTRAL_API_KEY")
query_engine = None

# Define LLMs
llm = MistralAI(api_key=env_api_key, model=llm_model)
embed_model = MistralAIEmbedding(model_name="mistral-embed", api_key=env_api_key)

# create client and a new collection
db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")

# set up ChromaVectorStore and load in data
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
service_context = ServiceContext.from_defaults(
    chunk_size=1024, llm=llm, embed_model=embed_model
)

#PDFReader = download_loader("PDFReader")
#loader = PDFReader()

index = VectorStoreIndex(
    [], service_context=service_context, storage_context=storage_context
)
query_engine = index.as_query_engine(similarity_top_k=5)

FILE = Path(__file__).resolve()
BASE_PATH = FILE.parents[0]


image = os.path.join(BASE_PATH,"img","logo_rizoa_auchan.jpg")
print(f"Chemin de l'image : {image}")
image = os.path.join("img","logo_rizoa_auchan.jpg")
print(f"chemin 2 : {image}")
image = os.path.abspath(os.path.join("img", "logo_rizoa_auchan.jpg"))
print(f"Image 3 : {image}")
image = os.path.join("https://huggingface.co/spaces/rizoa-auchan-hack/hack/blob/main/img/logo_rizoa_auchan.jpg")
print(f"Image 4 : {image}")

PLACEHOLDER = (image)

with gr.Blocks() as demo:
    with gr.Row(): 
        
        with gr.Column(scale=1): 
            gr.Image(
                    #value=os.path.join(BASE_PATH,"img","logo_rizoa_auchan.jpg"), 
                    #value=os.path.join("img","logo_rizoa_auchan.jpg"),
                    value=os.path.join("img","logo_rizoa_auchan.jpg"),
                    height=250,
                    width=250,
                    container=False, 
                    show_download_button=False
                    )
        with gr.Column(scale=4):   
            gr.Markdown(
                """ 
                # Bienvenue au Chatbot FAIR-PLAI 
                
                Ce chatbot est un assistant numérique, médiateur des vendeurs-acheteurs
                """
            )

    # gr.Markdown(""" ### 1 / Extract data from PDF """)

    # with gr.Row():
    #     with gr.Column():
    #         input_file = gr.File(
    #             label="Load a pdf",
    #             file_types=[".pdf"],
    #             file_count="single",
    #             type="filepath",
    #             interactive=True,
    #         )
    #         file_msg = gr.Textbox(
    #             label="Loaded documents:", container=False, visible=False
    #         )

    #         input_file.upload(
    #             fn=load_document,
    #             inputs=[
    #                 input_file,
    #             ],
    #             outputs=[file_msg],
    #             concurrency_limit=20,
    #         )

    #         file_btn = gr.Button(value="Encode file ✅", interactive=True)
    #         btn_msg = gr.Textbox(container=False, visible=False)

    #         with gr.Row():
    #             db_list = gr.Markdown(value=get_documents_in_db)
    #             delete_btn = gr.Button(value="Empty db 🗑️", interactive=True, scale=0)

    #         file_btn.click(
    #             load_file,
    #             inputs=[input_file],
    #             outputs=[file_msg, btn_msg, db_list],
    #             show_progress="full",
    #         )
    #         delete_btn.click(empty_db, outputs=[db_list], show_progress="minimal")

    gr.Markdown(""" ### Ask a question """)

    chatbot = gr.Chatbot()
    msg = gr.Textbox(placeholder=PLACEHOLDER)
    clear = gr.ClearButton([msg, chatbot])

    def respond(message, chat_history):
        response = query_engine.query(message)
        chat_history.append((message, str(response)))
        return chat_history

    msg.submit(respond, [msg, chatbot], [chatbot])

demo.title = TITLE

if __name__ == "__main__":
    demo.launch(allowed_paths=['/home/user/app/img/','./img/'])