Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes: int=101, | |
seed: int=29): | |
# creating pretrained weights | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
# setting up the transforms | |
transforms = weights.transforms() | |
# creating the model | |
model = torchvision.models.efficientnet_b2(weights=weights) | |
# freezing all the base layers | |
for param in model.parameters(): | |
param.requires_grad = False | |
# changing the cloassifier head | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, | |
inplace=True), | |
nn.Linear(in_features=1408, | |
out_features=num_classes) | |
) | |
return model, transforms | |