Spaces:
Sleeping
Sleeping
Commit
·
936c1ea
1
Parent(s):
8aeac52
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_effnetb2_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
# setting up class names
|
11 |
+
with open("class_names.txt", "r") as f:
|
12 |
+
class_names = [food.strip() for food in f.readlines()]
|
13 |
+
|
14 |
+
### model and transforms prepration ###
|
15 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101,
|
16 |
+
seed=29)
|
17 |
+
# loading the saved weights
|
18 |
+
effnetb2.load_state_dict(
|
19 |
+
torch.load(
|
20 |
+
f="pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
|
21 |
+
map_location=torch.device("cpu") # loading the model to cpu
|
22 |
+
)
|
23 |
+
)
|
24 |
+
|
25 |
+
### predict function ###
|
26 |
+
def predict(img) -> Tuple[Dict, float]:
|
27 |
+
# start a timer
|
28 |
+
start_time = timer()
|
29 |
+
|
30 |
+
# transforming the input image
|
31 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
32 |
+
|
33 |
+
# putting the model into eval mode & making prediction
|
34 |
+
effnetb2.eval()
|
35 |
+
with torch.inference_mode():
|
36 |
+
# passing transformed img through the model and turn pred logits into probs
|
37 |
+
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
38 |
+
|
39 |
+
# creating a prediction label & prediction probability dictionary
|
40 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
41 |
+
|
42 |
+
# calculate pred time
|
43 |
+
end_time = timer()
|
44 |
+
pred_time = round(end_time-start_time, 4)
|
45 |
+
|
46 |
+
# return pred dict and pred time
|
47 |
+
return pred_labels_and_probs, pred_time
|
48 |
+
|
49 |
+
### gradio app ###
|
50 |
+
# creating title, description and article
|
51 |
+
title = "FoodVision Big"
|
52 |
+
description = "An EfficientNetB2 feature extractor computer vision model to classify images in 101 different classes!"
|
53 |
+
|
54 |
+
# creating an example list
|
55 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
56 |
+
|
57 |
+
# creating the gradio demo
|
58 |
+
demo = gr.Interface(fn=predict, # maps inputs to outputs
|
59 |
+
inputs=gr.Image(type="pil"),
|
60 |
+
outputs=[gr.Label(num_top_classes=5, label="Predictions"),
|
61 |
+
gr.Number(label="Prediction Time (s)")],
|
62 |
+
examples=example_list,
|
63 |
+
title=title,
|
64 |
+
description=description)
|
65 |
+
|
66 |
+
# launching the demo
|
67 |
+
demo.launch()
|