import torch import torchvision from torch import nn def create_effnetb2_model(num_classes: int=101, seed: int=29): # creating pretrained weights weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT # setting up the transforms transforms = weights.transforms() # creating the model model = torchvision.models.efficientnet_b2(weights=weights) # freezing all the base layers for param in model.parameters(): param.requires_grad = False # changing the cloassifier head torch.manual_seed(seed) torch.cuda.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes) ) return model, transforms