### imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict class_names = ["pizza", "steak", "sushi"] ### model and transforms prepration ### effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3, seed=29) # loading the saved weights effnetb2.load_state_dict( torch.load( f="pretrained_effnetb2_feature_extractor.pth", map_location=torch.device("cpu") # loading the model to cpu ) ) ### predict function ### def predict(img) -> Tuple[Dict, float]: # start a timer start_time = timer() # transforming the input image img = effnetb2_transforms(img).unsqueeze(0) # putting the model into eval mode & making prediction effnetb2.eval() with torch.inference_mode(): # passing transformed img through the model and turn pred logits into probs pred_probs = torch.softmax(effnetb2(img), dim=1) # creating a prediction label & prediction probability dictionary pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # calculate pred time end_time = timer() pred_time = round(end_time-start_time, 4) # return pred dict and pred time return pred_labels_and_probs, pred_time ### gradio app ### # creating title, description and article title = "FoodVision Mini" description = "An EfficientNetB2 feature extractor computer vision model to classify images as pizza, steak or sushi." # creating an example list example_list = [["examples/" + example] for example in os.listdir("examples")] # creating the gradio demo demo = gr.Interface(fn=predict, # maps inputs to outputs inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=3, label="Predictions"), gr.Number(label="Prediction Time (s)")], examples=example_list, title=title, description=description) # launching the demo demo.launch(debug=False) # don't need `share=True` in HuggingFace spaces