Spaces:
Sleeping
Sleeping
File size: 11,393 Bytes
f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 285119c f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 285119c f029287 285119c f029287 e268a60 285119c f029287 285119c f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 e268a60 f029287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
from zipfile import ZipFile, BadZipFile
import tempfile
import os
import re
import pandas as pd
import collections
import json
import glob
from io import BytesIO
ai_patterns = [
"PIC*", "PersonalImageClassifier*", "Look*", "LookExtension*", "ChatBot", "ImageBot", "TMIC","TeachableMachine*",
"TeachableMachineImageClassifier*", "SpeechRecognizer*", "FaceExtension*","Pose*","Posenet","PosenetExtension", "Eliza*", "Alexa*"
]
drawing_and_animation_patterns = ["Ball", "Canvas", "ImageSprite"]
maps_patterns = ["Map", "Marker", "Circle", "FeatureCollection", "LineString", "Navigation","Polygon", "Retangle" ]
sensors_patterns = ["AccelerometerSensor", "BarcodeScanner", "Barometer", "Clock", "GyroscopeSensor", "Hygrometer", "LightSensor", "LocationSensor", "MagneticFieldSensor", "NearField","OrientationSensor", "ProximitySensor","Thermometer", "Pedometer"]
social_patterns = ["ContactPicker", "EmailPicker", "PhoneCall", "PhoneNumberPicker", "Texting", "Twitter"]
storage_patterns = ["File", "CloudDB", "DataFile", "Spreadsheet", "FusiontablesControl", "TinyDB", "TinyWebDB"]
connectivity_patterns = ["BluetoothClient", "ActivityStarter", "Serial", "BluetoothServer", "Web"]
def extract_components_using_regex(scm_content):
pattern = r'"\$Type":"(.*?)"'
components = re.findall(pattern, scm_content)
if 'roboflow' in scm_content.lower():
components.append("Using Roboflow")
return components
def extract_category_components(components, patterns):
category_components = []
for component in components:
for pattern in patterns:
if component.startswith(pattern):
category_components.append(component)
return category_components
def extract_extensions_from_aia(file_path: str):
extensions = []
with ZipFile(file_path, 'r') as zip_ref:
for file_path in zip_ref.namelist():
if file_path.endswith('components.json') and 'assets/external_comps/' in file_path:
with zip_ref.open(file_path) as file:
components_json_content = file.read().decode('utf-8', errors='ignore')
components_data = json.loads(components_json_content)
for component in components_data:
extension_type = component.get("type", "")
if extension_type:
extensions.append(extension_type)
return extensions
def count_events_in_bky_file(bky_content):
return bky_content.count('<block type="component_event"')
def extract_app_name_from_scm_files(temp_dir):
scm_files = glob.glob(f"{temp_dir}/src/appinventor/*/*/*.scm")
for scm_file in scm_files:
with open(scm_file, 'r', encoding='utf-8', errors='ignore') as file:
content = file.read()
regex_patterns = [
r'"AppName"\s*:\s*"([^"]+)"',
r'"AppName"\s*:\s*\'([^\']+)\''
]
for pattern in regex_patterns:
app_name_match = re.search(pattern, content)
if app_name_match:
return app_name_match.group(1)
print(f"Aviso: Nome do aplicativo não encontrado no diretório {temp_dir}")
return "N/A"
def extract_project_info_from_properties(file_path):
timestamp = "N/A"
app_name = "N/A"
app_version = "N/A"
authURL = "ai2.appinventor.mit.edu"
with tempfile.TemporaryDirectory() as temp_dir:
with ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
project_properties_file_path = 'youngandroidproject/project.properties'
if project_properties_file_path in zip_ref.namelist():
with zip_ref.open(project_properties_file_path) as file:
project_properties_lines = file.read().decode('utf-8').splitlines()
timestamp = project_properties_lines[1] if len(project_properties_lines) > 1 else "N/A"
for line in project_properties_lines:
app_name_match = re.match(r'aname=(.*)', line)
if app_name_match:
app_name = app_name_match.group(1)
app_version_match = re.match(r'versionname=(.*)', line)
if app_version_match:
app_version = app_version_match.group(1)
if app_name == "N/A":
print("O campo App Name não foi encontrado em project.properties. Tentando encontrar em arquivos .scm...")
app_name = extract_app_name_from_scm_files(temp_dir)
print(f"Nome do App encontrado nos arquivos .scm: {app_name}")
# ...
return {
'timestamp': timestamp,
'app_name': app_name,
'app_version': app_version,
'authURL': authURL
}
def extract_ai_components(components):
ai_components = []
for component in components:
for pattern in ai_patterns:
if '*' in pattern and component.startswith(pattern[:-1]):
ai_components.append(component)
elif component == pattern:
ai_components.append(component)
if "roboflow" in ' '.join(components).lower():
ai_components.append("Using Roboflow")
return ai_components
def extract_media_files(file_path: str):
media_files = []
with ZipFile(file_path, 'r') as zip_ref:
for file_path in zip_ref.namelist():
if 'assets/' in file_path and not file_path.endswith('/'):
media_files.append(os.path.basename(file_path))
return media_files
def list_components_in_aia_file(file_path):
results_df = pd.DataFrame(columns=[
'aia_file', 'project_info', 'components', 'IA components', 'screens', 'operators',
'variables', 'events', 'extensions', 'Media',
'Drawing and Animation', 'Maps', 'Sensors', 'Social', 'Storage', 'Connectivity'])
pd.set_option('display.max_colwidth', None)
file_name = os.path.basename(file_path)
components_list = []
number_of_screens = 0
operators_count = 0
variables_count = 0
events_count = 0
media_files = extract_media_files(file_path)
media_summary = ', '.join(media_files)
project_info = extract_project_info_from_properties(file_path)
project_info_str = f"Timestamp: {project_info['timestamp']}, App Name: {project_info['app_name']}, Version: {project_info['app_version']}, AuthURL: {project_info['authURL']}"
with tempfile.TemporaryDirectory() as temp_dir:
with ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
scm_files = glob.glob(temp_dir + '/src/appinventor/*/*/*.scm')
bky_files = glob.glob(temp_dir + '/src/appinventor/*/*/*.bky')
number_of_screens = len(scm_files)
for scm_file in scm_files:
with open(scm_file, 'r', encoding='utf-8', errors='ignore') as file:
content = file.read()
components = extract_components_using_regex(content)
components_list.extend(components)
operators_count += len(re.findall(r'[+\-*/<>!=&|]', content))
variables_count += len(re.findall(r'"\$Name":"(.*?)"', content))
drawing_and_animation_summary = ', '.join(extract_category_components(components_list, drawing_and_animation_patterns))
maps_summary = ', '.join(extract_category_components(components_list, maps_patterns))
sensors_summary = ', '.join(extract_category_components(components_list, sensors_patterns))
social_summary = ', '.join(extract_category_components(components_list, social_patterns))
storage_summary = ', '.join(extract_category_components(components_list, storage_patterns))
connectivity_summary = ', '.join(extract_category_components(components_list, connectivity_patterns))
extensions_list = []
extensions_list = extract_extensions_from_aia(file_path)
for bky_file in bky_files:
with open(bky_file, 'r', encoding='utf-8', errors='ignore') as file:
bky_content = file.read()
events_count += count_events_in_bky_file(bky_content)
extensions_summary = ', '.join(list(set(extensions_list)))
components_count = collections.Counter(components_list)
components_summary = [f'{comp} ({count} x)' if count > 1 else comp for comp, count in components_count.items()]
ai_components_summary = extract_ai_components(components_list)
new_row = pd.DataFrame([{
'aia_file': file_name,
'project_info': project_info_str,
'components': ', '.join(components_summary),
'IA components': ', '.join(ai_components_summary),
'screens': number_of_screens,
'operators': operators_count,
'variables': variables_count,
'events': events_count,
'extensions': extensions_summary,
'Media': media_summary,
'Drawing and Animation': drawing_and_animation_summary,
'Maps': maps_summary,
'Sensors': sensors_summary,
'Social': social_summary,
'Storage': storage_summary,
'Connectivity': connectivity_summary
}])
results_df = pd.concat([results_df, new_row], ignore_index=True)
return results_df
#
output_style = """
<style>
.output-container {
max-height: 500px; /* Ajuste a altura máxima conforme necessário */
overflow: auto; /* Isso permite a rolagem vertical e horizontal se necessário */
display: block; /* Isso garante que o container seja renderizado abaixo do botão submit */
}
.output-container table {
width: 100%; /* Isso faz com que a tabela utilize toda a largura do container */
border-collapse: collapse;
}
.output-container th, .output-container td {
border: 1px solid #ddd; /* Isso adiciona bordas às células para melhor visualização */
text-align: left;
padding: 8px;
}
</style>
"""
def analyze_aia(uploaded_file):
try:
file_path = uploaded_file.name if hasattr(uploaded_file, 'name') else None
if file_path and os.path.exists(file_path):
with ZipFile(file_path, 'r') as zip_ref:
with tempfile.TemporaryDirectory() as temp_dir:
zip_ref.extractall(temp_dir)
results_df = list_components_in_aia_file(file_path)
html_result = results_df.to_html(escape=False, classes="output-html")
return output_style + f'<div class="output-container">{html_result}</div>'
else:
return output_style + "Não foi possível localizar o arquivo .aia."
except BadZipFile:
return output_style + "Falha ao abrir o arquivo .aia como um arquivo zip. Ele pode estar corrompido ou não é um arquivo .aia válido."
except Exception as e:
return output_style + f"Erro ao processar o arquivo: {str(e)}"
iface = gr.Interface(
fn=analyze_aia,
inputs=gr.File(),
outputs=gr.HTML(),
title="AIA-Scope",
description="Upload an .aia file to analyze its components.",
live=False
)
if __name__ == "__main__":
iface.launch(debug=True)
|