Spaces:
Sleeping
Sleeping
Commit
·
701098c
1
Parent(s):
a61fcf3
Resolve conflitos
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
@@ -10,9 +10,9 @@ pinned: false
|
|
10 |
license: ecl-2.0
|
11 |
---
|
12 |
|
13 |
-
##
|
14 |
|
15 |
-
Análise
|
16 |
|
17 |
Confira a referência de configuração em [Hugging Face Spaces Config Reference](https://huggingface.co/docs/hub/spaces-config-reference).
|
18 |
|
|
|
1 |
---
|
2 |
+
title: AIA-Scope
|
3 |
+
emoji: 🔍
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
10 |
license: ecl-2.0
|
11 |
---
|
12 |
|
13 |
+
## AIA-Scope
|
14 |
|
15 |
+
Análise do arquivo .aia gerado pelo MIT App Inventor
|
16 |
|
17 |
Confira a referência de configuração em [Hugging Face Spaces Config Reference](https://huggingface.co/docs/hub/spaces-config-reference).
|
18 |
|
app.py
CHANGED
@@ -1,83 +1,305 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
import tempfile
|
6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
return {
|
18 |
-
'
|
19 |
-
'
|
20 |
-
'
|
21 |
-
'
|
22 |
-
'Spectral Centroid': spectral_centroid
|
23 |
}
|
24 |
|
25 |
|
26 |
-
def calculate_advanced_metrics(y, sr):
|
27 |
-
metrics = {}
|
28 |
|
29 |
-
f0, _, _ = librosa.pyin(y, fmin=50, fmax=4000)
|
30 |
-
if f0 is not None:
|
31 |
-
metrics['Average F0 (YIN)'] = np.nanmean(f0)
|
32 |
|
33 |
-
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
|
34 |
-
metrics['Average Chroma'] = np.mean(chroma)
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
def generate_spectrogram(y, sr):
|
43 |
-
plt.figure(figsize=(10, 4))
|
44 |
-
librosa.display.specshow(librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max), sr=sr, x_axis='time', y_axis='log')
|
45 |
-
plt.colorbar(format='%+2.0f dB')
|
46 |
-
plt.title('Spectrogram')
|
47 |
-
plt.tight_layout()
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
def process_audio(file):
|
57 |
-
if file is None:
|
58 |
-
return {}, "placeholder.png"
|
59 |
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
basic_metrics = calculate_basic_metrics(y, sr)
|
66 |
-
advanced_metrics = calculate_advanced_metrics(y, sr)
|
67 |
|
68 |
-
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
iface = gr.Interface(
|
76 |
-
fn=
|
77 |
-
inputs=gr.
|
78 |
-
outputs=
|
79 |
-
title="
|
80 |
-
description="
|
|
|
81 |
)
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from zipfile import ZipFile, BadZipFile
|
|
|
|
|
3 |
import tempfile
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import pandas as pd
|
7 |
+
import collections
|
8 |
+
import json
|
9 |
+
import glob
|
10 |
+
from io import BytesIO
|
11 |
|
12 |
|
13 |
+
|
14 |
+
ai_patterns = [
|
15 |
+
"PIC*", "PersonalImageClassifier*", "Look*", "LookExtension*", "ChatBot", "ImageBot", "TMIC","TeachableMachine*",
|
16 |
+
"TeachableMachineImageClassifier*", "SpeechRecognizer*", "FaceExtension*","Pose*","Posenet","PosenetExtension", "Eliza*", "Alexa*"
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
drawing_and_animation_patterns = ["Ball", "Canvas", "ImageSprite"]
|
21 |
+
maps_patterns = ["Map", "Marker", "Circle", "FeatureCollection", "LineString", "Navigation","Polygon", "Retangle" ]
|
22 |
+
sensors_patterns = ["AccelerometerSensor", "BarcodeScanner", "Barometer", "Clock", "GyroscopeSensor", "Hygrometer", "LightSensor", "LocationSensor", "MagneticFieldSensor", "NearField","OrientationSensor", "ProximitySensor","Thermometer", "Pedometer"]
|
23 |
+
social_patterns = ["ContactPicker", "EmailPicker", "PhoneCall", "PhoneNumberPicker", "Texting", "Twitter"]
|
24 |
+
storage_patterns = ["File", "CloudDB", "DataFile", "Spreadsheet", "FusiontablesControl", "TinyDB", "TinyWebDB"]
|
25 |
+
connectivity_patterns = ["BluetoothClient", "ActivityStarter", "Serial", "BluetoothServer", "Web"]
|
26 |
+
|
27 |
+
|
28 |
+
def extract_components_using_regex(scm_content):
|
29 |
+
pattern = r'"\$Type":"(.*?)"'
|
30 |
+
components = re.findall(pattern, scm_content)
|
31 |
+
if 'roboflow' in scm_content.lower():
|
32 |
+
components.append("Using Roboflow")
|
33 |
+
return components
|
34 |
+
|
35 |
+
|
36 |
+
def extract_category_components(components, patterns):
|
37 |
+
category_components = []
|
38 |
+
for component in components:
|
39 |
+
for pattern in patterns:
|
40 |
+
if component.startswith(pattern):
|
41 |
+
category_components.append(component)
|
42 |
+
return category_components
|
43 |
+
|
44 |
+
|
45 |
+
def extract_extensions_from_aia(file_path: str):
|
46 |
+
extensions = []
|
47 |
+
with ZipFile(file_path, 'r') as zip_ref:
|
48 |
+
for file_path in zip_ref.namelist():
|
49 |
+
if file_path.endswith('components.json') and 'assets/external_comps/' in file_path:
|
50 |
+
with zip_ref.open(file_path) as file:
|
51 |
+
components_json_content = file.read().decode('utf-8', errors='ignore')
|
52 |
+
components_data = json.loads(components_json_content)
|
53 |
+
for component in components_data:
|
54 |
+
extension_type = component.get("type", "")
|
55 |
+
if extension_type:
|
56 |
+
extensions.append(extension_type)
|
57 |
+
return extensions
|
58 |
+
|
59 |
+
def count_events_in_bky_file(bky_content):
|
60 |
+
|
61 |
+
return bky_content.count('<block type="component_event"')
|
62 |
+
|
63 |
+
def extract_app_name_from_scm_files(temp_dir):
|
64 |
+
scm_files = glob.glob(f"{temp_dir}/src/appinventor/*/*/*.scm")
|
65 |
+
for scm_file in scm_files:
|
66 |
+
with open(scm_file, 'r', encoding='utf-8', errors='ignore') as file:
|
67 |
+
content = file.read()
|
68 |
+
|
69 |
+
|
70 |
+
regex_patterns = [
|
71 |
+
r'"AppName"\s*:\s*"([^"]+)"',
|
72 |
+
r'"AppName"\s*:\s*\'([^\']+)\''
|
73 |
+
]
|
74 |
+
|
75 |
+
for pattern in regex_patterns:
|
76 |
+
app_name_match = re.search(pattern, content)
|
77 |
+
if app_name_match:
|
78 |
+
return app_name_match.group(1)
|
79 |
+
|
80 |
+
|
81 |
+
print(f"Aviso: Nome do aplicativo não encontrado no diretório {temp_dir}")
|
82 |
+
return "N/A"
|
83 |
+
|
84 |
+
def extract_project_info_from_properties(file_path):
|
85 |
+
|
86 |
+
timestamp = "N/A"
|
87 |
+
app_name = "N/A"
|
88 |
+
app_version = "N/A"
|
89 |
+
authURL = "ai2.appinventor.mit.edu"
|
90 |
+
|
91 |
+
|
92 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
93 |
+
with ZipFile(file_path, 'r') as zip_ref:
|
94 |
+
zip_ref.extractall(temp_dir)
|
95 |
+
|
96 |
+
project_properties_file_path = 'youngandroidproject/project.properties'
|
97 |
+
|
98 |
+
|
99 |
+
if project_properties_file_path in zip_ref.namelist():
|
100 |
+
with zip_ref.open(project_properties_file_path) as file:
|
101 |
+
project_properties_lines = file.read().decode('utf-8').splitlines()
|
102 |
+
|
103 |
+
|
104 |
+
timestamp = project_properties_lines[1] if len(project_properties_lines) > 1 else "N/A"
|
105 |
+
|
106 |
+
|
107 |
+
for line in project_properties_lines:
|
108 |
+
app_name_match = re.match(r'aname=(.*)', line)
|
109 |
+
if app_name_match:
|
110 |
+
app_name = app_name_match.group(1)
|
111 |
+
|
112 |
+
app_version_match = re.match(r'versionname=(.*)', line)
|
113 |
+
if app_version_match:
|
114 |
+
app_version = app_version_match.group(1)
|
115 |
+
|
116 |
+
|
117 |
+
if app_name == "N/A":
|
118 |
+
print("O campo App Name não foi encontrado em project.properties. Tentando encontrar em arquivos .scm...")
|
119 |
+
app_name = extract_app_name_from_scm_files(temp_dir)
|
120 |
+
print(f"Nome do App encontrado nos arquivos .scm: {app_name}")
|
121 |
+
|
122 |
+
# ...
|
123 |
+
|
124 |
|
125 |
return {
|
126 |
+
'timestamp': timestamp,
|
127 |
+
'app_name': app_name,
|
128 |
+
'app_version': app_version,
|
129 |
+
'authURL': authURL
|
|
|
130 |
}
|
131 |
|
132 |
|
|
|
|
|
133 |
|
|
|
|
|
|
|
134 |
|
|
|
|
|
135 |
|
136 |
+
def extract_ai_components(components):
|
137 |
+
ai_components = []
|
138 |
+
for component in components:
|
139 |
+
for pattern in ai_patterns:
|
140 |
+
if '*' in pattern and component.startswith(pattern[:-1]):
|
141 |
+
ai_components.append(component)
|
142 |
+
elif component == pattern:
|
143 |
+
ai_components.append(component)
|
144 |
+
if "roboflow" in ' '.join(components).lower():
|
145 |
+
ai_components.append("Using Roboflow")
|
146 |
+
return ai_components
|
147 |
+
|
148 |
+
def extract_media_files(file_path: str):
|
149 |
+
media_files = []
|
150 |
+
with ZipFile(file_path, 'r') as zip_ref:
|
151 |
+
for file_path in zip_ref.namelist():
|
152 |
+
if 'assets/' in file_path and not file_path.endswith('/'):
|
153 |
+
media_files.append(os.path.basename(file_path))
|
154 |
+
return media_files
|
155 |
+
|
156 |
+
def list_components_in_aia_file(file_path):
|
157 |
+
|
158 |
+
results_df = pd.DataFrame(columns=[
|
159 |
+
'aia_file', 'project_info', 'components', 'IA components', 'screens', 'operators',
|
160 |
+
'variables', 'events', 'extensions', 'Media',
|
161 |
+
'Drawing and Animation', 'Maps', 'Sensors', 'Social', 'Storage', 'Connectivity'])
|
162 |
|
163 |
+
|
164 |
+
pd.set_option('display.max_colwidth', None)
|
165 |
+
file_name = os.path.basename(file_path)
|
166 |
+
|
167 |
|
168 |
+
components_list = []
|
169 |
+
number_of_screens = 0
|
170 |
+
operators_count = 0
|
171 |
+
variables_count = 0
|
172 |
+
events_count = 0
|
173 |
+
|
174 |
+
media_files = extract_media_files(file_path)
|
175 |
+
media_summary = ', '.join(media_files)
|
176 |
+
|
177 |
+
project_info = extract_project_info_from_properties(file_path)
|
178 |
+
project_info_str = f"Timestamp: {project_info['timestamp']}, App Name: {project_info['app_name']}, Version: {project_info['app_version']}, AuthURL: {project_info['authURL']}"
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
182 |
+
with ZipFile(file_path, 'r') as zip_ref:
|
183 |
+
zip_ref.extractall(temp_dir)
|
184 |
+
scm_files = glob.glob(temp_dir + '/src/appinventor/*/*/*.scm')
|
185 |
+
bky_files = glob.glob(temp_dir + '/src/appinventor/*/*/*.bky')
|
186 |
|
187 |
+
number_of_screens = len(scm_files)
|
188 |
+
for scm_file in scm_files:
|
189 |
+
with open(scm_file, 'r', encoding='utf-8', errors='ignore') as file:
|
190 |
+
content = file.read()
|
191 |
+
components = extract_components_using_regex(content)
|
192 |
+
components_list.extend(components)
|
193 |
+
operators_count += len(re.findall(r'[+\-*/<>!=&|]', content))
|
194 |
+
variables_count += len(re.findall(r'"\$Name":"(.*?)"', content))
|
195 |
|
196 |
+
|
197 |
+
drawing_and_animation_summary = ', '.join(extract_category_components(components_list, drawing_and_animation_patterns))
|
198 |
+
maps_summary = ', '.join(extract_category_components(components_list, maps_patterns))
|
199 |
+
sensors_summary = ', '.join(extract_category_components(components_list, sensors_patterns))
|
200 |
+
social_summary = ', '.join(extract_category_components(components_list, social_patterns))
|
201 |
+
storage_summary = ', '.join(extract_category_components(components_list, storage_patterns))
|
202 |
+
connectivity_summary = ', '.join(extract_category_components(components_list, connectivity_patterns))
|
203 |
|
|
|
|
|
|
|
204 |
|
205 |
+
|
206 |
+
|
207 |
+
extensions_list = []
|
208 |
+
extensions_list = extract_extensions_from_aia(file_path)
|
209 |
|
210 |
+
for bky_file in bky_files:
|
211 |
+
with open(bky_file, 'r', encoding='utf-8', errors='ignore') as file:
|
212 |
+
bky_content = file.read()
|
213 |
+
events_count += count_events_in_bky_file(bky_content)
|
214 |
+
|
215 |
|
|
|
|
|
216 |
|
217 |
+
|
218 |
+
extensions_summary = ', '.join(list(set(extensions_list)))
|
219 |
|
220 |
+
components_count = collections.Counter(components_list)
|
221 |
+
components_summary = [f'{comp} ({count} x)' if count > 1 else comp for comp, count in components_count.items()]
|
222 |
+
ai_components_summary = extract_ai_components(components_list)
|
223 |
+
new_row = pd.DataFrame([{
|
224 |
+
'aia_file': file_name,
|
225 |
+
'project_info': project_info_str,
|
226 |
+
'components': ', '.join(components_summary),
|
227 |
+
'IA components': ', '.join(ai_components_summary),
|
228 |
+
'screens': number_of_screens,
|
229 |
+
'operators': operators_count,
|
230 |
+
'variables': variables_count,
|
231 |
+
'events': events_count,
|
232 |
+
'extensions': extensions_summary,
|
233 |
+
'Media': media_summary,
|
234 |
+
'Drawing and Animation': drawing_and_animation_summary,
|
235 |
+
'Maps': maps_summary,
|
236 |
+
'Sensors': sensors_summary,
|
237 |
+
'Social': social_summary,
|
238 |
+
'Storage': storage_summary,
|
239 |
+
'Connectivity': connectivity_summary
|
240 |
+
}])
|
241 |
|
242 |
+
|
243 |
+
results_df = pd.concat([results_df, new_row], ignore_index=True)
|
244 |
+
return results_df
|
245 |
+
#
|
246 |
+
|
247 |
+
|
248 |
+
output_style = """
|
249 |
+
<style>
|
250 |
+
.output-container {
|
251 |
+
max-height: 500px; /* Ajuste a altura máxima conforme necessário */
|
252 |
+
overflow: auto; /* Isso permite a rolagem vertical e horizontal se necessário */
|
253 |
+
display: block; /* Isso garante que o container seja renderizado abaixo do botão submit */
|
254 |
+
}
|
255 |
+
.output-container table {
|
256 |
+
width: 100%; /* Isso faz com que a tabela utilize toda a largura do container */
|
257 |
+
border-collapse: collapse;
|
258 |
+
}
|
259 |
+
.output-container th, .output-container td {
|
260 |
+
border: 1px solid #ddd; /* Isso adiciona bordas às células para melhor visualização */
|
261 |
+
text-align: left;
|
262 |
+
padding: 8px;
|
263 |
+
}
|
264 |
+
</style>
|
265 |
+
"""
|
266 |
|
267 |
|
268 |
+
def analyze_aia(uploaded_file):
|
269 |
+
try:
|
270 |
+
|
271 |
+
file_path = uploaded_file.name if hasattr(uploaded_file, 'name') else None
|
272 |
+
|
273 |
+
if file_path and os.path.exists(file_path):
|
274 |
+
with ZipFile(file_path, 'r') as zip_ref:
|
275 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
276 |
+
zip_ref.extractall(temp_dir)
|
277 |
+
results_df = list_components_in_aia_file(file_path)
|
278 |
+
|
279 |
+
html_result = results_df.to_html(escape=False, classes="output-html")
|
280 |
+
return output_style + f'<div class="output-container">{html_result}</div>'
|
281 |
+
|
282 |
+
|
283 |
+
else:
|
284 |
+
return output_style + "Não foi possível localizar o arquivo .aia."
|
285 |
+
|
286 |
+
except BadZipFile:
|
287 |
+
return output_style + "Falha ao abrir o arquivo .aia como um arquivo zip. Ele pode estar corrompido ou não é um arquivo .aia válido."
|
288 |
+
|
289 |
+
except Exception as e:
|
290 |
+
return output_style + f"Erro ao processar o arquivo: {str(e)}"
|
291 |
+
|
292 |
iface = gr.Interface(
|
293 |
+
fn=analyze_aia,
|
294 |
+
inputs=gr.File(),
|
295 |
+
outputs=gr.HTML(),
|
296 |
+
title="AIA-Scope",
|
297 |
+
description="Upload an .aia file to analyze its components.",
|
298 |
+
live=False
|
299 |
)
|
300 |
|
301 |
+
if __name__ == "__main__":
|
302 |
+
iface.launch(debug=True)
|
303 |
+
|
304 |
+
|
305 |
+
|