Spaces:
Runtime error
Runtime error
from time import time | |
t_ini = time() | |
from fastapi import FastAPI, UploadFile, File | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.responses import FileResponse | |
#from fastapi.middleware.cors import CORSMiddleware | |
from typing import Optional | |
from transformers import pipeline | |
from pydantic import BaseModel | |
from fastapi.responses import JSONResponse | |
from io import BytesIO | |
import PyPDF2 | |
print('End loading libraries: ', round(time()-t_ini)) | |
t_ini = time() | |
model_name = "roaltopo/text-talk-ai_question-answer-12" | |
qa_pipeline = pipeline( | |
"question-answering", | |
model=model_name, | |
use_auth_token = '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' | |
) | |
print('End loading model: ', round(time()-t_ini)) | |
t_ini = time() | |
app = FastAPI() | |
# Diccionario en memoria para almacenar información | |
text_storage = {} | |
class TextInfo(BaseModel): | |
text: Optional[str] = None | |
pdf: Optional[bytes] = None | |
html_url: Optional[str] = None | |
class QuestionInfo(BaseModel): | |
question: str | |
async def store_text(uuid: str, text_info: TextInfo): | |
# Almacena la información en el diccionario en memoria | |
text_storage[uuid] = { | |
'text': text_info.text, | |
#'pdf': text_info.pdf, | |
#'html_url': text_info.html_url | |
} | |
return {'success': True} | |
# Ruta para cargar un archivo | |
async def upload_file(uuid: str, file: UploadFile = File(...)): | |
try: | |
pdf_content = await file.read() | |
pdf_stream = BytesIO(pdf_content) | |
pdf_reader = PyPDF2.PdfReader(pdf_stream) | |
# Aquí puedes trabajar con el objeto pdf_reader | |
# por ejemplo, puedes imprimir el número de páginas del PDF | |
#print(f"Número de páginas: {len(pdf_reader.pages)}") | |
# Variable para almacenar el texto extraído del PDF | |
extracted_text = '' | |
# Itera sobre todas las páginas del PDF | |
for page_num in range(len(pdf_reader.pages)): | |
# Obtiene el objeto de la página | |
page = pdf_reader.pages[page_num] | |
# Extrae el texto de la página y agrégalo a la variable extracted_text | |
#extracted_text += page.extract_text().replace('\n', ' ') | |
tmp = page.extract_text() | |
tmp = tmp.replace('\n', ' ') | |
tmp = tmp.replace(' ', ' ') | |
tmp = tmp.replace('. ', '.\n') | |
extracted_text += tmp | |
if len(extracted_text) > 4000: | |
extracted_text = extracted_text[:4000] | |
break | |
# Almacena la información en el diccionario en memoria | |
text_storage[uuid] = { | |
'text': extracted_text, | |
} | |
return JSONResponse(content={'success': True}) | |
except Exception as e: | |
return JSONResponse(content={"message": f"Error al cargar el archivo: {e}"}, status_code=500) | |
async def answer_question(uuid: str, question_info: QuestionInfo): | |
#text_id = question_info.text_id | |
question = question_info.question | |
# Verifica si el texto con el ID existe en el diccionario | |
if uuid not in text_storage: | |
return {'error': 'Text not found'} | |
# Implementa la lógica de procesamiento de la pregunta aquí | |
# En este ejemplo, simplemente devuelve una respuesta fija | |
#print(type(text_storage[text_id]), text_storage[text_id]['text']) | |
#response = "El texto original es: " + text_storage[text_id]['text'] | |
#return {'response': response} | |
#return qa_pipeline(question=question, context=text_storage[text_id]['text']) | |
r = qa_pipeline(question=question, context=text_storage[uuid]['text'], top_k=10) | |
#print(r) | |
#print('-----------------------------') | |
return r[0] | |
app.mount("/", StaticFiles(directory="static", html=True), name="static") | |
def index() -> FileResponse: | |
return FileResponse(path="/app/static/index.html", media_type="text/html") | |