|
""" |
|
Much of this code is adapted from Andrej Karpathy's NanoGPT |
|
(https://github.com/karpathy/nanoGPT) |
|
""" |
|
from dataclasses import dataclass |
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
from .model import GPT, GPTConfig, MLP |
|
|
|
|
|
class NonCausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
|
|
self.flash = ( |
|
hasattr(torch.nn.functional, "scaled_dot_product_attention") and self.dropout == 0.0 |
|
) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
if self.flash: |
|
|
|
y = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False |
|
) |
|
else: |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = ( |
|
y.transpose(1, 2).contiguous().view(B, T, C) |
|
) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
|
|
class FineBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = NonCausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class FineGPT(GPT): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
del self.lm_head |
|
self.config = config |
|
self.n_codes_total = config.n_codes_total |
|
self.transformer = nn.ModuleDict( |
|
dict( |
|
wtes=nn.ModuleList( |
|
[ |
|
nn.Embedding(config.input_vocab_size, config.n_embd) |
|
for _ in range(config.n_codes_total) |
|
] |
|
), |
|
wpe=nn.Embedding(config.block_size, config.n_embd), |
|
drop=nn.Dropout(config.dropout), |
|
h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]), |
|
ln_f=nn.LayerNorm(config.n_embd), |
|
) |
|
) |
|
self.lm_heads = nn.ModuleList( |
|
[ |
|
nn.Linear(config.n_embd, config.output_vocab_size, bias=False) |
|
for _ in range(config.n_codes_given, self.n_codes_total) |
|
] |
|
) |
|
for i in range(self.n_codes_total - config.n_codes_given): |
|
self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight |
|
|
|
def forward(self, pred_idx, idx): |
|
device = idx.device |
|
b, t, codes = idx.size() |
|
assert ( |
|
t <= self.config.block_size |
|
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
assert pred_idx > 0, "cannot predict 0th codebook" |
|
assert codes == self.n_codes_total, (b, t, codes) |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
|
|
|
|
tok_embs = [ |
|
wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes) |
|
] |
|
tok_emb = torch.cat(tok_embs, dim=-1) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1) |
|
x = self.transformer.drop(x + pos_emb) |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_heads[pred_idx - self.config.n_codes_given](x) |
|
return logits |
|
|
|
def get_num_params(self, non_embedding=True): |
|
""" |
|
Return the number of parameters in the model. |
|
For non-embedding count (default), the position embeddings get subtracted. |
|
The token embeddings would too, except due to the parameter sharing these |
|
params are actually used as weights in the final layer, so we include them. |
|
""" |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
for wte in self.transformer.wtes: |
|
n_params -= wte.weight.numel() |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|
|
|
|
@dataclass |
|
class FineGPTConfig(GPTConfig): |
|
n_codes_total: int = 8 |
|
n_codes_given: int = 1 |
|
|