inititial checkin
Browse files- app.py +32 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import CLIPProcessor, CLIPModel
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
model = CLIPModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
8 |
+
processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
9 |
+
|
10 |
+
def calculate_similarity(image, text_prompt):
|
11 |
+
# Process inputs
|
12 |
+
inputs = processor(text=text_prompt, images=image, return_tensors="pt", padding=True)
|
13 |
+
|
14 |
+
# Forward pass
|
15 |
+
outputs = model(**inputs)
|
16 |
+
|
17 |
+
# Normalize and calculate cosine similarity
|
18 |
+
image_features = outputs.image_embeds / outputs.image_embeds.norm(dim=-1, keepdim=True)
|
19 |
+
text_features = outputs.text_embeds / outputs.text_embeds.norm(dim=-1, keepdim=True)
|
20 |
+
cosine_similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
21 |
+
|
22 |
+
return {"Cosine Similarity": cosine_similarity.item()}
|
23 |
+
|
24 |
+
# Set up Gradio interface
|
25 |
+
iface = gr.Interface(fn=calculate_similarity,
|
26 |
+
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox(label="Text Prompt")],
|
27 |
+
outputs=[gr.outputs.Label(label="Cosine Similarity")],
|
28 |
+
title="OpenClip Cosine Similarity Calculator",
|
29 |
+
description="Upload an image and provide a text prompt to calculate the cosine similarity.")
|
30 |
+
|
31 |
+
# Launch the interface locally for testing
|
32 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
pillow
|