|
_base_ = [ |
|
'../../_base_/default_runtime.py', |
|
'../../_base_/schedules/schedule_sgd_100k_iters.py', |
|
'../../_base_/det_models/dbnetpp_r50dcnv2_fpnc.py', |
|
'../../_base_/det_datasets/synthtext.py', |
|
'../../_base_/det_pipelines/dbnet_pipeline.py' |
|
] |
|
|
|
train_list = {{_base_.train_list}} |
|
test_list = {{_base_.test_list}} |
|
|
|
img_norm_cfg_r50dcnv2 = dict( |
|
mean=[122.67891434, 116.66876762, 104.00698793], |
|
std=[58.395, 57.12, 57.375], |
|
to_rgb=True) |
|
train_pipeline_r50dcnv2 = [ |
|
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), |
|
dict( |
|
type='LoadTextAnnotations', |
|
with_bbox=True, |
|
with_mask=True, |
|
poly2mask=False), |
|
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5), |
|
dict(type='Normalize', **img_norm_cfg_r50dcnv2), |
|
dict( |
|
type='ImgAug', |
|
args=[['Fliplr', 0.5], |
|
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]], |
|
clip_invalid_ploys=False), |
|
dict(type='EastRandomCrop', target_size=(640, 640)), |
|
dict(type='DBNetTargets', shrink_ratio=0.4), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='CustomFormatBundle', |
|
keys=['gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask'], |
|
visualize=dict(flag=False, boundary_key='gt_shrink')), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask']) |
|
] |
|
|
|
test_pipeline_4068_1024 = {{_base_.test_pipeline_4068_1024}} |
|
|
|
data = dict( |
|
samples_per_gpu=16, |
|
workers_per_gpu=8, |
|
val_dataloader=dict(samples_per_gpu=1), |
|
test_dataloader=dict(samples_per_gpu=1), |
|
train=dict( |
|
type='UniformConcatDataset', |
|
datasets=train_list, |
|
pipeline=train_pipeline_r50dcnv2), |
|
val=dict( |
|
type='UniformConcatDataset', |
|
datasets=test_list, |
|
pipeline=test_pipeline_4068_1024), |
|
test=dict( |
|
type='UniformConcatDataset', |
|
datasets=test_list, |
|
pipeline=test_pipeline_4068_1024)) |
|
|
|
evaluation = dict(interval=200000, metric='hmean-iou') |
|
|