import os import gradio as gr import numpy as np io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_en-hk") io2 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_hk-en") io3 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_en-hk") io4 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_hk-en") def inference(audio, model): print(audio) if model == "xm_transformer_s2ut_en-hk": out_audio = io1(audio) elif model == "xm_transformer_s2ut_hk-en": out_audio = io2(audio) elif model == "xm_transformer_unity_en-hk": out_audio = io3(audio) else: out_audio = io4(audio) return out_audio model = gr.Dropdown(choices=["xm_transformer_unity_en-hk", "xm_transformer_unity_hk-en", "xm_transformer_s2ut_en-hk", "xm_transformer_s2ut_hk-en"]) audio = gr.Audio(source="microphone", type="filepath", label="Input") demo = gr.Interface(fn=inference, inputs=[audio, model], outputs=["audio"], examples=[ ['audio1.wav', 'xm_transformer_unity_hk-en'], ['audio2.wav', 'xm_transformer_unity_hk-en'], ['audio3.wav', 'xm_transformer_unity_hk-en'], ['en_audio1.wav', 'xm_transformer_unity_en-hk'], ['en_audio2.wav', 'xm_transformer_unity_en-hk'] ]) demo.launch()