Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def predict(input_img):
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
gradio_app = gr.Interface(
|
11 |
-
predict,
|
12 |
-
inputs=gr.Image(label="
|
13 |
-
outputs=
|
14 |
-
title="
|
15 |
)
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
-
gradio_app.launch()
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import Dataset, DataLoader
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import io
|
6 |
+
import joblib
|
7 |
+
import requests
|
8 |
+
from tqdm import tqdm
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
from sklearn.preprocessing import LabelEncoder
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
+
from torchvision import models
|
14 |
import gradio as gr
|
|
|
15 |
|
16 |
+
device = 'cpu'
|
17 |
+
le = LabelEncoder()
|
18 |
+
le = joblib.load("/kaggle/working/SVD/le.gz")
|
19 |
+
|
20 |
+
class ModelPre(torch.nn.Module):
|
21 |
+
def __init__(self):
|
22 |
+
super().__init__()
|
23 |
+
self.embedding = torch.nn.Sequential(
|
24 |
+
*list(models.convnext_small(weights=models.ConvNeXt_Small_Weights.IMAGENET1K_V1).children())[:-1],
|
25 |
+
torch.nn.Flatten(),
|
26 |
+
torch.nn.Linear(in_features=768, out_features=512),
|
27 |
+
torch.nn.ReLU(),
|
28 |
+
torch.nn.Linear(in_features=512, out_features=len(le.classes_) + 1),
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, data):
|
32 |
+
return self.embedding(data)
|
33 |
+
|
34 |
+
model = torch.load("/SVD/GeoG.pth", map_location=torch.device(device))
|
35 |
+
|
36 |
+
modelm = ModelPre()
|
37 |
+
modelm.load_state_dict(model['model'])
|
38 |
+
|
39 |
+
import warnings
|
40 |
+
warnings.filterwarnings("ignore", category=RuntimeWarning, module="multiprocessing.popen_fork")
|
41 |
+
|
42 |
+
cmp = transforms.Compose([
|
43 |
+
transforms.ToTensor(),
|
44 |
+
transforms.Resize(size=(224, 224), antialias=True),
|
45 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
46 |
+
])
|
47 |
|
48 |
def predict(input_img):
|
49 |
+
with torch.inference_mode():
|
50 |
+
img = cmp(input_img).unsqueeze(0)
|
51 |
+
res = modelm(img.to(device))
|
52 |
+
prediction = le.inverse_transform(torch.argmax(res.cpu()).unsqueeze(0).numpy())[0]
|
53 |
+
return prediction
|
54 |
|
55 |
gradio_app = gr.Interface(
|
56 |
+
fn=predict,
|
57 |
+
inputs=gr.Image(label="Upload an Image", type="pil"),
|
58 |
+
outputs=gr.Label(label="Location"),
|
59 |
+
title="Predict the Location of this Image"
|
60 |
)
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
+
gradio_app.launch()
|