Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -80,17 +80,21 @@ def get_s2_cell_polygon(cell_id):
|
|
80 |
vertices.append(vertices[0]) # Close the polygon
|
81 |
return vertices
|
82 |
|
83 |
-
def create_map_figure(predictions, cell_ids):
|
84 |
fig = go.Figure()
|
85 |
|
86 |
# Assign colors based on rank
|
87 |
colors = ['rgba(0, 255, 0, 0.2)'] * 3 + ['rgba(255, 255, 0, 0.2)'] * 7
|
|
|
|
|
|
|
88 |
|
89 |
for rank, cell_id in enumerate(cell_ids):
|
90 |
cell_id = int(float(cell_id))
|
91 |
polygon = get_s2_cell_polygon(cell_id)
|
92 |
lats, lons = zip(*polygon)
|
93 |
color = colors[rank]
|
|
|
94 |
fig.add_trace(go.Scattermapbox(
|
95 |
lat=lats,
|
96 |
lon=lons,
|
@@ -101,17 +105,23 @@ def create_map_figure(predictions, cell_ids):
|
|
101 |
name=f'Prediction {rank + 1}', # Updated label
|
102 |
))
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
fig.update_layout(
|
105 |
-
mapbox_style="open-street-map",
|
106 |
hovermode='closest',
|
107 |
mapbox=dict(
|
108 |
bearing=0,
|
109 |
center=go.layout.mapbox.Center(
|
110 |
-
lat=np.mean(lats),
|
111 |
-
lon=np.mean(lons)
|
112 |
),
|
113 |
pitch=0,
|
114 |
-
zoom=
|
115 |
),
|
116 |
)
|
117 |
|
@@ -124,20 +134,24 @@ def create_label_output(predictions):
|
|
124 |
fig = create_map_figure(results, cell_ids)
|
125 |
return fig
|
126 |
|
127 |
-
#
|
128 |
-
def predict_and_plot(input_img):
|
129 |
predictions = predict(input_img)
|
130 |
-
return
|
|
|
131 |
|
132 |
|
133 |
# Gradio app definition
|
134 |
with gr.Blocks() as gradio_app:
|
135 |
with gr.Column():
|
136 |
input_image = gr.Image(label="Upload an Image", type="pil")
|
|
|
137 |
output_map = gr.Plot(label="Predicted Location on Map")
|
138 |
btn_predict = gr.Button("Predict")
|
139 |
|
140 |
-
|
|
|
|
|
141 |
examples = ["GB.PNG", "IT.PNG", "NL.PNG", "NZ.PNG"]
|
142 |
gr.Examples(examples=examples, inputs=input_image)
|
143 |
-
gradio_app.launch()
|
|
|
80 |
vertices.append(vertices[0]) # Close the polygon
|
81 |
return vertices
|
82 |
|
83 |
+
def create_map_figure(predictions, cell_ids, selected_index=None):
|
84 |
fig = go.Figure()
|
85 |
|
86 |
# Assign colors based on rank
|
87 |
colors = ['rgba(0, 255, 0, 0.2)'] * 3 + ['rgba(255, 255, 0, 0.2)'] * 7
|
88 |
+
zoom_level = 1
|
89 |
+
center_lat = None
|
90 |
+
center_lon = None
|
91 |
|
92 |
for rank, cell_id in enumerate(cell_ids):
|
93 |
cell_id = int(float(cell_id))
|
94 |
polygon = get_s2_cell_polygon(cell_id)
|
95 |
lats, lons = zip(*polygon)
|
96 |
color = colors[rank]
|
97 |
+
|
98 |
fig.add_trace(go.Scattermapbox(
|
99 |
lat=lats,
|
100 |
lon=lons,
|
|
|
105 |
name=f'Prediction {rank + 1}', # Updated label
|
106 |
))
|
107 |
|
108 |
+
# Set zoom based on the selected index
|
109 |
+
if selected_index is not None and rank == selected_index:
|
110 |
+
zoom_level = 10 # Adjust zoom level
|
111 |
+
center_lat = np.mean(lats)
|
112 |
+
center_lon = np.mean(lons)
|
113 |
+
|
114 |
fig.update_layout(
|
115 |
+
mapbox_style="open-street-map",
|
116 |
hovermode='closest',
|
117 |
mapbox=dict(
|
118 |
bearing=0,
|
119 |
center=go.layout.mapbox.Center(
|
120 |
+
lat=center_lat if center_lat else np.mean(lats),
|
121 |
+
lon=center_lon if center_lon else np.mean(lons)
|
122 |
),
|
123 |
pitch=0,
|
124 |
+
zoom=zoom_level # Zoom in if an index is selected
|
125 |
),
|
126 |
)
|
127 |
|
|
|
134 |
fig = create_map_figure(results, cell_ids)
|
135 |
return fig
|
136 |
|
137 |
+
# Update the predict_and_plot function to handle zoom on selection
|
138 |
+
def predict_and_plot(input_img, selected_prediction):
|
139 |
predictions = predict(input_img)
|
140 |
+
return create_map_figure(predictions, predictions[1], selected_index=selected_prediction)
|
141 |
+
|
142 |
|
143 |
|
144 |
# Gradio app definition
|
145 |
with gr.Blocks() as gradio_app:
|
146 |
with gr.Column():
|
147 |
input_image = gr.Image(label="Upload an Image", type="pil")
|
148 |
+
selected_prediction = gr.Dropdown(choices=[f"Prediction {i+1}" for i in range(10)], label="Select Prediction to Zoom")
|
149 |
output_map = gr.Plot(label="Predicted Location on Map")
|
150 |
btn_predict = gr.Button("Predict")
|
151 |
|
152 |
+
# Update click function to include selected prediction
|
153 |
+
btn_predict.click(predict_and_plot, inputs=[input_image, selected_prediction], outputs=output_map)
|
154 |
+
|
155 |
examples = ["GB.PNG", "IT.PNG", "NL.PNG", "NZ.PNG"]
|
156 |
gr.Examples(examples=examples, inputs=input_image)
|
157 |
+
gradio_app.launch()
|