Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,13 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import
|
4 |
import pandas as pd
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Retrieve the token from the environment variables
|
8 |
token = os.environ.get("token")
|
@@ -15,21 +20,6 @@ repo = Repository(
|
|
15 |
)
|
16 |
repo.git_pull()
|
17 |
|
18 |
-
import torch
|
19 |
-
from torch.utils.data import Dataset, DataLoader
|
20 |
-
import pandas as pd
|
21 |
-
import numpy as np
|
22 |
-
import io
|
23 |
-
import joblib
|
24 |
-
import requests
|
25 |
-
from tqdm import tqdm
|
26 |
-
from PIL import Image
|
27 |
-
from torchvision import transforms
|
28 |
-
from sklearn.preprocessing import LabelEncoder
|
29 |
-
from sklearn.model_selection import train_test_split
|
30 |
-
from torchvision import models
|
31 |
-
import gradio as gr
|
32 |
-
|
33 |
device = 'cpu'
|
34 |
le = LabelEncoder()
|
35 |
le = joblib.load("SVD/le.gz")
|
@@ -45,7 +35,6 @@ class ModelPre(torch.nn.Module):
|
|
45 |
torch.nn.ReLU(),
|
46 |
torch.nn.Linear(in_features=512,out_features=len_classes),
|
47 |
)
|
48 |
-
# Freeze all layers
|
49 |
|
50 |
def forward(self, data):
|
51 |
return self.embedding(data)
|
@@ -55,9 +44,6 @@ model = torch.load("SVD/GeoG.pth", map_location=torch.device(device))
|
|
55 |
modelm = ModelPre()
|
56 |
modelm.load_state_dict(model['model'])
|
57 |
|
58 |
-
import warnings
|
59 |
-
warnings.filterwarnings("ignore", category=RuntimeWarning, module="multiprocessing.popen_fork")
|
60 |
-
|
61 |
cmp = transforms.Compose([
|
62 |
transforms.ToTensor(),
|
63 |
transforms.Resize(size=(224, 224), antialias=True),
|
@@ -76,29 +62,17 @@ def predict(input_img):
|
|
76 |
results = {top_10_predictions[i]: float(top_10_probabilities[i]) for i in range(10)}
|
77 |
return results
|
78 |
|
79 |
-
def
|
80 |
-
|
81 |
-
max_prob = data["Probability"].max()
|
82 |
-
return gr.BarPlot(
|
83 |
-
data,
|
84 |
-
x="Location",
|
85 |
-
y="Probability",
|
86 |
-
title="Top 10 Predictions with Probabilities",
|
87 |
-
tooltip=["Location", "Probability"],
|
88 |
-
y_lim=[0, max_prob],
|
89 |
-
width=800, # Set the width of the plot
|
90 |
-
height=600 # Set the height of the plot
|
91 |
-
)
|
92 |
|
93 |
def predict_and_plot(input_img):
|
94 |
predictions = predict(input_img)
|
95 |
-
return
|
96 |
-
|
97 |
-
|
98 |
-
gradio_app = gr.Interface(
|
99 |
fn=predict_and_plot,
|
100 |
-
inputs=
|
101 |
-
outputs=
|
102 |
title="Predict the Location of this Image"
|
103 |
)
|
104 |
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import joblib
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision import transforms
|
9 |
+
from sklearn.preprocessing import LabelEncoder
|
10 |
+
from gradio import Interface, Image, Label
|
11 |
|
12 |
# Retrieve the token from the environment variables
|
13 |
token = os.environ.get("token")
|
|
|
20 |
)
|
21 |
repo.git_pull()
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
device = 'cpu'
|
24 |
le = LabelEncoder()
|
25 |
le = joblib.load("SVD/le.gz")
|
|
|
35 |
torch.nn.ReLU(),
|
36 |
torch.nn.Linear(in_features=512,out_features=len_classes),
|
37 |
)
|
|
|
38 |
|
39 |
def forward(self, data):
|
40 |
return self.embedding(data)
|
|
|
44 |
modelm = ModelPre()
|
45 |
modelm.load_state_dict(model['model'])
|
46 |
|
|
|
|
|
|
|
47 |
cmp = transforms.Compose([
|
48 |
transforms.ToTensor(),
|
49 |
transforms.Resize(size=(224, 224), antialias=True),
|
|
|
62 |
results = {top_10_predictions[i]: float(top_10_probabilities[i]) for i in range(10)}
|
63 |
return results
|
64 |
|
65 |
+
def create_label_output(predictions):
|
66 |
+
return predictions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def predict_and_plot(input_img):
|
69 |
predictions = predict(input_img)
|
70 |
+
return create_label_output(predictions)
|
71 |
+
|
72 |
+
gradio_app = Interface(
|
|
|
73 |
fn=predict_and_plot,
|
74 |
+
inputs=Image(label="Upload an Image", type="pil"),
|
75 |
+
outputs=Label(num_top_classes=10),
|
76 |
title="Predict the Location of this Image"
|
77 |
)
|
78 |
|