embedding / app.py
rockerritesh's picture
Upload 3 files
8fe59a0 verified
raw
history blame contribute delete
521 Bytes
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List
from sentence_transformers import SentenceTransformer
app = FastAPI()
model = SentenceTransformer('sentence-transformers/gtr-t5-base')
class TextBatch(BaseModel):
texts: List[str]
@app.post("/embed")
async def get_embeddings(batch: TextBatch):
embeddings = model.encode(batch.texts)
return {"embeddings": embeddings.tolist()}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=2000)