Spaces:
Sleeping
Sleeping
import streamlit as st | |
import PyPDF2 | |
import io | |
import os | |
import re | |
import string | |
import nltk | |
# # Download NLTK resources | |
# nltk.download('words') | |
# # English words from NLTK corpus | |
# english_words = set(nltk.corpus.words.words()) | |
# with open("index.dic") as f: | |
# hunspell_words = {line.split("/")[0].strip() for line in f if not line.startswith("#")} | |
# def is_english_word(word): | |
# return word.lower() in hunspell_words | |
from nltk.stem import WordNetLemmatizer, PorterStemmer | |
from nltk.corpus import words, wordnet | |
import spacy | |
from spellchecker import SpellChecker | |
import string | |
import spacy.cli | |
spacy.cli.download("en_core_web_sm") | |
# Download necessary NLTK resources | |
nltk.download('wordnet') | |
nltk.download('words') | |
# Initialize tools | |
lemmatizer = WordNetLemmatizer() | |
stemmer = PorterStemmer() | |
english_words = set(words.words()) | |
nlp = spacy.load("en_core_web_sm") # SpaCy language model | |
spell = SpellChecker() # Spell checker | |
import en_core_web_sm | |
nlp = en_core_web_sm.load() | |
# Combine dictionaries for better coverage | |
combined_dictionary = english_words.union(spell.word_frequency.keys()) | |
def is_english_word(word): | |
""" | |
Checks if a word is English and returns the valid English word or None if not recognized. | |
""" | |
# Preprocess the word: strip punctuation and lowercase | |
word_cleaned = word.lower().strip(string.punctuation) | |
if not word_cleaned: | |
return None | |
# 1. Direct dictionary match | |
if word_cleaned in combined_dictionary: | |
return word_cleaned | |
# 2. Lemmatization | |
lemma = lemmatizer.lemmatize(word_cleaned) | |
if lemma in combined_dictionary: | |
return lemma | |
# 3. Stemming | |
stem = stemmer.stem(word_cleaned) | |
if stem in combined_dictionary: | |
return stem | |
# 4. Spell checker | |
corrected_word = spell.correction(word_cleaned) | |
if corrected_word in combined_dictionary: | |
return corrected_word | |
# 5. SpaCy's language model (check if token is recognized as English) | |
doc = nlp(word_cleaned) | |
if doc and doc[0].is_alpha and doc[0].lang_ == "en": | |
return word_cleaned | |
return None | |
# Define Devanagari digits and patterns for matching | |
DEVANAGARI_DIGITS = {'०', '१', '२', '३', '४', '५', '६', '७', '८', '९', '१०'} | |
DEVANAGARI_PATTERN = re.compile(r'^[०-९]+(?:[.,/-][०-९]+)*$') # Match Devanagari digits | |
NUMERIC_PATTERN = re.compile(r'^\d+(?:[.,/]\d+)*$') # Match numeric patterns | |
# Unicode conversion mappings | |
unicodeatoz = ["ब", "द", "अ", "म", "भ", "ा", "न", "ज", "ष्", "व", "प", "ि", "फ", "ल", "य", "उ", "त्र", "च", "क", "त", "ग", "ख", "ध", "ह", "थ", "श"] | |
unicodeAtoZ = ["ब्", "ध", "ऋ", "म्", "भ्", "ँ", "न्", "ज्", "क्ष्", "व्", "प्", "ी", "ः", "ल्", "इ", "ए", "त्त", "च्", "क्", "त्", "ग्", "ख्", "ध्", "ह्", "थ्", "श्"] | |
unicode0to9 = ["ण्", "ज्ञ", "द्द", "घ", "द्ध", "छ", "ट", "ठ", "ड", "ढ"] | |
symbolsDict = { | |
"~": "ञ्", "`": "ञ", "!": "१", "@": "२", "#": "३", "$": "४", "%": "५", "^": "६", "&": "७", "*": "८", "(": "९", | |
")": "०", "-": "(", "_": ")", "+": "ं", "[": "ृ", "{": "र्", "]": "े", "}": "ै", "\\": "्", "|": "्र", ";": "स", | |
":": "स्", "'": "ु", "\"": "ू", ",": ",", "<": "?", ".": "।", ">": "श्र", "/": "र", "?": "रु", "=": ".", | |
"ˆ": "फ्", "Î": "ङ्ख", "å": "द्व", "÷": "/" | |
} | |
def normalizePreeti(preetitxt): | |
normalized = '' | |
previoussymbol = '' | |
preetitxt = preetitxt.replace('qm', 's|') | |
preetitxt = preetitxt.replace('f]', 'ो') | |
preetitxt = preetitxt.replace('km', 'फ') | |
preetitxt = preetitxt.replace('0f', 'ण') | |
preetitxt = preetitxt.replace('If', 'क्ष') | |
preetitxt = preetitxt.replace('if', 'ष') | |
preetitxt = preetitxt.replace('cf', 'आ') | |
index = -1 | |
while index + 1 < len(preetitxt): | |
index += 1 | |
character = preetitxt[index] | |
try: | |
if preetitxt[index + 2] == '{': | |
if preetitxt[index + 1] == 'f' or preetitxt[index + 1] == 'ो': | |
normalized += '{' + character + preetitxt[index + 1] | |
index += 2 | |
continue | |
if preetitxt[index + 1] == '{': | |
if character != 'f': | |
normalized += '{' + character | |
index += 1 | |
continue | |
except IndexError: | |
pass | |
if character == 'l': | |
previoussymbol = 'l' | |
continue | |
else: | |
normalized += character + previoussymbol | |
previoussymbol = '' | |
return normalized | |
def convert(preeti): | |
converted = '' | |
normalizedpreeti = normalizePreeti(preeti) | |
for index, character in enumerate(normalizedpreeti): | |
try: | |
if ord(character) >= 97 and ord(character) <= 122: | |
converted += unicodeatoz[ord(character) - 97] | |
elif ord(character) >= 65 and ord(character) <= 90: | |
converted += unicodeAtoZ[ord(character) - 65] | |
elif ord(character) >= 48 and ord(character) <= 57: | |
converted += unicode0to9[ord(character) - 48] | |
else: | |
converted += symbolsDict[character] | |
except KeyError: | |
converted += character | |
return converted | |
# def is_english_word(word): | |
# """Check if a word is English.""" | |
# word = word.lower().strip(string.punctuation) | |
# return word in english_words | |
def is_valid_numeric(word): | |
"""Check if the word is a valid numeric string.""" | |
return bool(NUMERIC_PATTERN.match(word)) | |
def is_devanagari_digit(word): | |
"""Check if the word contains only Devanagari digits.""" | |
return bool(DEVANAGARI_PATTERN.match(word)) | |
def process_text_word_by_word(page_text): | |
"""Process each word and retain or convert based on language.""" | |
processed_text = [] | |
words_in_page = page_text.split() | |
for word in words_in_page: | |
word_cleaned = word.strip(string.punctuation) | |
if is_english_word(word_cleaned): | |
processed_text.append(word) # Retain English words | |
elif is_devanagari_digit(word_cleaned): | |
processed_text.append(word) # Retain Devanagari digits | |
elif is_valid_numeric(word_cleaned): | |
processed_text.append(word) # Retain numeric expressions | |
else: | |
processed_text.append(convert(word)) # Convert other words | |
return ' '.join(processed_text) | |
def text_both_english_and_nepali(pdf_file): | |
"""Process text from each page of a PDF.""" | |
pages_with_english = [] | |
text = "" | |
# Extract text from PDF | |
reader = PyPDF2.PdfReader(pdf_file) | |
for page_num, page in enumerate(reader.pages): | |
page_text = page.extract_text() | |
processed_text = process_text_word_by_word(page_text) | |
text += f"\nPage {page_num + 1}:\n{processed_text}" | |
return text | |
def main(): | |
st.title("Advanced PDF/TXT to Unicode Converter") | |
uploaded_file = st.file_uploader("Upload a PDF or TXT file", type=["pdf", "txt"]) | |
if uploaded_file is not None: | |
text = "" | |
file_extension = os.path.splitext(uploaded_file.name)[1].lower() | |
if file_extension == ".pdf": | |
text = text_both_english_and_nepali(uploaded_file) | |
elif file_extension == ".txt": | |
text = process_text_word_by_word(uploaded_file.getvalue().decode("utf-8")) | |
st.subheader("Processed Text") | |
st.text_area("", value=text, height=400) | |
# Download button for the processed text | |
st.download_button( | |
label="Download Processed Text", | |
data=text.encode("utf-8"), | |
file_name="processed_text.txt", | |
mime="text/plain" | |
) | |
if __name__ == "__main__": | |
main() | |