Spaces:
Sleeping
Sleeping
better way to handle english
Browse files
app.py
CHANGED
@@ -2,151 +2,206 @@ import streamlit as st
|
|
2 |
import PyPDF2
|
3 |
import io
|
4 |
import os
|
|
|
5 |
|
6 |
-
|
7 |
unicodeatoz = ["ब", "द", "अ", "म", "भ", "ा", "न", "ज", "ष्", "व", "प", "ि", "फ", "ल", "य", "उ", "त्र", "च", "क", "त", "ग", "ख", "ध", "ह", "थ", "श"]
|
8 |
unicodeAtoZ = ["ब्", "ध", "ऋ", "म्", "भ्", "ँ", "न्", "ज्", "क्ष्", "व्", "प्", "ी", "ः", "ल्", "इ", "ए", "त्त", "च्", "क्", "त्", "ग्", "ख्", "ध्", "ह्", "थ्", "श्"]
|
9 |
unicode0to9 = ["ण्", "ज्ञ", "द्द", "घ", "द्ध", "छ", "ट", "ठ", "ड", "ढ"]
|
10 |
symbolsDict = {
|
11 |
-
"~": "ञ्",
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"%": "५",
|
18 |
-
"^": "६",
|
19 |
-
"&": "७",
|
20 |
-
"*": "८",
|
21 |
-
"(": "९",
|
22 |
-
")": "०",
|
23 |
-
"-": "(",
|
24 |
-
"_": ")",
|
25 |
-
"+": "ं",
|
26 |
-
"[": "ृ",
|
27 |
-
"{": "र्",
|
28 |
-
"]": "े",
|
29 |
-
"}": "ै",
|
30 |
-
"\\": "्",
|
31 |
-
"|": "्र",
|
32 |
-
";": "स",
|
33 |
-
":": "स्",
|
34 |
-
"'": "ु",
|
35 |
-
"\"": "ू",
|
36 |
-
",": ",",
|
37 |
-
"<": "?",
|
38 |
-
".": "।",
|
39 |
-
">": "श्र",
|
40 |
-
"/": "र",
|
41 |
-
"?": "रु",
|
42 |
-
"=": ".",
|
43 |
-
"ˆ": "फ्",
|
44 |
-
"Î": "ङ्ख",
|
45 |
-
"å": "द्व",
|
46 |
-
"÷": "/"
|
47 |
}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def normalizePreeti(preetitxt):
|
|
|
50 |
normalized = ''
|
51 |
previoussymbol = ''
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
index = -1
|
60 |
while index + 1 < len(preetitxt):
|
61 |
index += 1
|
62 |
character = preetitxt[index]
|
|
|
63 |
try:
|
64 |
-
if preetitxt[index + 2] == '{':
|
65 |
if preetitxt[index + 1] == 'f' or preetitxt[index + 1] == 'ो':
|
66 |
normalized += '{' + character + preetitxt[index + 1]
|
67 |
index += 2
|
68 |
continue
|
69 |
-
|
|
|
70 |
if character != 'f':
|
71 |
normalized += '{' + character
|
72 |
index += 1
|
73 |
continue
|
74 |
except IndexError:
|
75 |
pass
|
|
|
76 |
if character == 'l':
|
77 |
previoussymbol = 'l'
|
78 |
continue
|
79 |
else:
|
80 |
normalized += character + previoussymbol
|
81 |
previoussymbol = ''
|
|
|
82 |
return normalized
|
83 |
|
84 |
-
def
|
|
|
85 |
converted = ''
|
86 |
normalizedpreeti = normalizePreeti(preeti)
|
87 |
-
|
|
|
88 |
try:
|
89 |
-
if ord(
|
90 |
-
converted += unicodeatoz[ord(character) -
|
91 |
-
elif ord(
|
92 |
-
converted += unicodeAtoZ[ord(character) -
|
93 |
-
elif ord(
|
94 |
-
converted += unicode0to9[ord(character) -
|
95 |
else:
|
96 |
-
converted += symbolsDict
|
97 |
-
except KeyError:
|
98 |
converted += character
|
99 |
-
|
100 |
return converted
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def extract_text_from_pdf(pdf_file):
|
|
|
103 |
text = ''
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
return text
|
109 |
|
110 |
-
def process_file(inputfile):
|
111 |
-
ext = os.path.splitext(inputfile)[1].lower()
|
112 |
-
if ext == '.pdf':
|
113 |
-
preeti = extract_text_from_pdf(inputfile)
|
114 |
-
else:
|
115 |
-
with open(inputfile, "r") as fp:
|
116 |
-
preeti = fp.read()
|
117 |
-
return convert(preeti)
|
118 |
-
|
119 |
def main():
|
120 |
-
st.title("
|
|
|
121 |
|
122 |
uploaded_file = st.file_uploader("Choose a PDF or TXT file", type=["pdf", "txt"])
|
123 |
|
124 |
if uploaded_file is not None:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
main()
|
|
|
2 |
import PyPDF2
|
3 |
import io
|
4 |
import os
|
5 |
+
import re
|
6 |
|
7 |
+
# Existing mapping dictionaries
|
8 |
unicodeatoz = ["ब", "द", "अ", "म", "भ", "ा", "न", "ज", "ष्", "व", "प", "ि", "फ", "ल", "य", "उ", "त्र", "च", "क", "त", "ग", "ख", "ध", "ह", "थ", "श"]
|
9 |
unicodeAtoZ = ["ब्", "ध", "ऋ", "म्", "भ्", "ँ", "न्", "ज्", "क्ष्", "व्", "प्", "ी", "ः", "ल्", "इ", "ए", "त्त", "च्", "क्", "त्", "ग्", "ख्", "ध्", "ह्", "थ्", "श्"]
|
10 |
unicode0to9 = ["ण्", "ज्ञ", "द्द", "घ", "द्ध", "छ", "ट", "ठ", "ड", "ढ"]
|
11 |
symbolsDict = {
|
12 |
+
"~": "ञ्", "`": "ञ", "!": "१", "@": "२", "#": "३", "$": "४", "%": "५",
|
13 |
+
"^": "६", "&": "७", "*": "८", "(": "९", ")": "०", "-": "(", "_": ")",
|
14 |
+
"+": "ं", "[": "ृ", "{": "र्", "]": "े", "}": "ै", "\\": "्", "|": "्र",
|
15 |
+
";": "स", ":": "स्", "'": "ु", "\"": "ू", ",": ",", "<": "?", ".": "।",
|
16 |
+
">": "श्र", "/": "र", "?": "रु", "=": ".", "ˆ": "फ्", "Î": "ङ्ख",
|
17 |
+
"å": "द्व", "÷": "/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
19 |
|
20 |
+
def is_preeti_text(text):
|
21 |
+
"""
|
22 |
+
Check if text segment is likely to be Preeti-encoded Nepali.
|
23 |
+
Returns True if the text contains common Preeti patterns.
|
24 |
+
"""
|
25 |
+
preeti_patterns = [
|
26 |
+
r'cf', r'qm', r'If', r'0f', r'km', r'f]', # Common Preeti combinations
|
27 |
+
r'[a-zA-Z]{2,}[\\|\[\]{}]', # Preeti vowel signs and consonants
|
28 |
+
]
|
29 |
+
|
30 |
+
return any(re.search(pattern, text) for pattern in preeti_patterns)
|
31 |
+
|
32 |
def normalizePreeti(preetitxt):
|
33 |
+
"""Normalized Preeti text with improved handling"""
|
34 |
normalized = ''
|
35 |
previoussymbol = ''
|
36 |
+
|
37 |
+
# Common Preeti substitutions
|
38 |
+
replacements = {
|
39 |
+
'qm': 's|',
|
40 |
+
'f]': 'ो',
|
41 |
+
'km': 'फ',
|
42 |
+
'0f': 'ण',
|
43 |
+
'If': 'क्ष',
|
44 |
+
'if': 'ष',
|
45 |
+
'cf': 'आ'
|
46 |
+
}
|
47 |
+
|
48 |
+
for old, new in replacements.items():
|
49 |
+
preetitxt = preetitxt.replace(old, new)
|
50 |
+
|
51 |
index = -1
|
52 |
while index + 1 < len(preetitxt):
|
53 |
index += 1
|
54 |
character = preetitxt[index]
|
55 |
+
|
56 |
try:
|
57 |
+
if index + 2 < len(preetitxt) and preetitxt[index + 2] == '{':
|
58 |
if preetitxt[index + 1] == 'f' or preetitxt[index + 1] == 'ो':
|
59 |
normalized += '{' + character + preetitxt[index + 1]
|
60 |
index += 2
|
61 |
continue
|
62 |
+
|
63 |
+
if index + 1 < len(preetitxt) and preetitxt[index + 1] == '{':
|
64 |
if character != 'f':
|
65 |
normalized += '{' + character
|
66 |
index += 1
|
67 |
continue
|
68 |
except IndexError:
|
69 |
pass
|
70 |
+
|
71 |
if character == 'l':
|
72 |
previoussymbol = 'l'
|
73 |
continue
|
74 |
else:
|
75 |
normalized += character + previoussymbol
|
76 |
previoussymbol = ''
|
77 |
+
|
78 |
return normalized
|
79 |
|
80 |
+
def convert_preeti_segment(preeti):
|
81 |
+
"""Convert a single Preeti segment to Unicode"""
|
82 |
converted = ''
|
83 |
normalizedpreeti = normalizePreeti(preeti)
|
84 |
+
|
85 |
+
for character in normalizedpreeti:
|
86 |
try:
|
87 |
+
if ord('a') <= ord(character) <= ord('z'):
|
88 |
+
converted += unicodeatoz[ord(character) - ord('a')]
|
89 |
+
elif ord('A') <= ord(character) <= ord('Z'):
|
90 |
+
converted += unicodeAtoZ[ord(character) - ord('A')]
|
91 |
+
elif ord('0') <= ord(character) <= ord('9'):
|
92 |
+
converted += unicode0to9[ord(character) - ord('0')]
|
93 |
else:
|
94 |
+
converted += symbolsDict.get(character, character)
|
95 |
+
except (KeyError, IndexError):
|
96 |
converted += character
|
97 |
+
|
98 |
return converted
|
99 |
|
100 |
+
def smart_convert(text):
|
101 |
+
"""
|
102 |
+
Convert text while preserving English segments.
|
103 |
+
Uses pattern matching to identify and preserve English text.
|
104 |
+
"""
|
105 |
+
# Patterns to identify different text segments
|
106 |
+
patterns = [
|
107 |
+
# Email addresses
|
108 |
+
r'\b[\w\.-]+@[\w\.-]+\.\w+\b',
|
109 |
+
# URLs
|
110 |
+
r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
|
111 |
+
# Date patterns
|
112 |
+
r'\b\d{1,4}[-/]\d{1,2}[-/]\d{1,4}\b',
|
113 |
+
# Common English words (3 or more characters)
|
114 |
+
r'\b[A-Za-z]{3,}\b',
|
115 |
+
# Numbers with units
|
116 |
+
r'\b\d+\s*[A-Za-z]+\b',
|
117 |
+
]
|
118 |
+
|
119 |
+
# Combine patterns
|
120 |
+
combined_pattern = '|'.join(patterns)
|
121 |
+
|
122 |
+
# Split text into segments while preserving delimiters
|
123 |
+
segments = []
|
124 |
+
last_end = 0
|
125 |
+
|
126 |
+
for match in re.finditer(combined_pattern, text):
|
127 |
+
start, end = match.span()
|
128 |
+
|
129 |
+
# Add text before match
|
130 |
+
if start > last_end:
|
131 |
+
segment = text[last_end:start]
|
132 |
+
if segment.strip():
|
133 |
+
segments.append((segment, is_preeti_text(segment)))
|
134 |
+
|
135 |
+
# Add matched text (preserve it)
|
136 |
+
segments.append((match.group(), False))
|
137 |
+
last_end = end
|
138 |
+
|
139 |
+
# Add remaining text
|
140 |
+
if last_end < len(text):
|
141 |
+
segment = text[last_end:]
|
142 |
+
if segment.strip():
|
143 |
+
segments.append((segment, is_preeti_text(segment)))
|
144 |
+
|
145 |
+
# Convert segments
|
146 |
+
result = ''
|
147 |
+
for segment, is_preeti in segments:
|
148 |
+
if is_preeti:
|
149 |
+
result += convert_preeti_segment(segment)
|
150 |
+
else:
|
151 |
+
result += segment
|
152 |
+
|
153 |
+
return result
|
154 |
+
|
155 |
def extract_text_from_pdf(pdf_file):
|
156 |
+
"""Extract text from PDF with improved encoding handling"""
|
157 |
text = ''
|
158 |
+
try:
|
159 |
+
with open(pdf_file, 'rb') as file:
|
160 |
+
reader = PyPDF2.PdfReader(file)
|
161 |
+
for page in reader.pages:
|
162 |
+
text += page.extract_text() or ''
|
163 |
+
except Exception as e:
|
164 |
+
st.error(f"Error reading PDF: {str(e)}")
|
165 |
+
return ''
|
166 |
return text
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
def main():
|
169 |
+
st.title("Smart Preeti to Unicode Converter")
|
170 |
+
st.write("This converter preserves English text while converting Preeti to Unicode")
|
171 |
|
172 |
uploaded_file = st.file_uploader("Choose a PDF or TXT file", type=["pdf", "txt"])
|
173 |
|
174 |
if uploaded_file is not None:
|
175 |
+
try:
|
176 |
+
if uploaded_file.name.lower().endswith('.pdf'):
|
177 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(uploaded_file.read()))
|
178 |
+
text = ""
|
179 |
+
for page in pdf_reader.pages:
|
180 |
+
text += page.extract_text() or ''
|
181 |
+
else: # .txt file
|
182 |
+
text = uploaded_file.getvalue().decode("utf-8")
|
183 |
+
|
184 |
+
converted_text = smart_convert(text)
|
185 |
+
|
186 |
+
col1, col2 = st.columns(2)
|
187 |
+
|
188 |
+
with col1:
|
189 |
+
st.subheader("Original Text")
|
190 |
+
st.text_area("", value=text, height=300)
|
191 |
+
|
192 |
+
with col2:
|
193 |
+
st.subheader("Converted Text")
|
194 |
+
st.text_area("", value=converted_text, height=300)
|
195 |
+
|
196 |
+
st.download_button(
|
197 |
+
label="Download Converted Text",
|
198 |
+
data=converted_text.encode("utf-8"),
|
199 |
+
file_name="converted_text.txt",
|
200 |
+
mime="text/plain"
|
201 |
+
)
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
st.error(f"An error occurred: {str(e)}")
|
205 |
|
206 |
if __name__ == "__main__":
|
207 |
main()
|