File size: 6,753 Bytes
195a488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b6669
195a488
 
d2b6669
195a488
 
 
 
d2b6669
195a488
 
 
d2b6669
 
 
 
195a488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b6669
 
195a488
 
 
 
 
 
 
 
 
 
 
 
 
d2b6669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195a488
d2b6669
 
 
195a488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b6669
195a488
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import networkx as nx
import matplotlib.pyplot as plt
from neo4j import GraphDatabase
import io
import base64

class Neo4jGraphVisualizer:
    def __init__(self, uri, username, password):
        """
        Initialize the Neo4j graph database connection
        
        Args:
            uri (str): Neo4j database URI
            username (str): Neo4j username
            password (str): Neo4j password
        """
        self.driver = GraphDatabase.driver(uri, auth=(username, password))

    def fetch_graph_data(self):
        """
        Fetch graph data from Neo4j database
        
        Returns:
            dict: A dictionary containing nodes and relationships
        """
        with self.driver.session() as session:
            # Fetch all nodes with elementId instead of deprecated ID()
            nodes_result = session.run("""
                MATCH (n) 
                RETURN elementId(n) as id, 
                       labels(n) as labels, 
                       properties(n) as properties
            """)
            
            # Fetch all relationships using elementId
            relationships_result = session.run("""
                MATCH (a)-[r]->(b) 
                RETURN 
                    elementId(a) as source_id, 
                    elementId(b) as target_id, 
                    type(r) as relationship_type,
                    properties(r) as relationship_properties
            """)
            
            # Process nodes
            nodes = [
                {
                    'id': record['id'], 
                    'label': record['labels'][0] if record['labels'] else 'Unknown',
                    'properties': dict(record['properties'])
                } 
                for record in nodes_result
            ]
            
            # Process relationships
            relationships = [
                {
                    'source': record['source_id'], 
                    'target': record['target_id'], 
                    'type': record['relationship_type'],
                    'properties': dict(record.get('relationship_properties', {}))
                } 
                for record in relationships_result
            ]
            
            return {'nodes': nodes, 'relationships': relationships}

    def visualize_graph(self):
        """
        Visualize the graph using NetworkX and Matplotlib
        
        Returns:
            str: Base64 encoded image of the graph
        """
        try:
            # Fetch graph data
            graph_data = self.fetch_graph_data()
            
            # Create NetworkX graph
            G = nx.DiGraph()
            
            # Add nodes
            for node in graph_data['nodes']:
                # Use node's label or properties for display
                label = node.get('properties', {}).get('name', str(node['id']))
                G.add_node(node['id'], 
                           label=label, 
                           properties=node['properties'])
            
            # Add edges
            for rel in graph_data['relationships']:
                G.add_edge(rel['source'], rel['target'], 
                           type=rel['type'], 
                           properties=rel['properties'])
            
            # Visualization
            plt.figure(figsize=(16, 12))
            pos = nx.spring_layout(G, k=0.9, iterations=50)  # Improved layout
            
            # Draw nodes with color and size based on properties
            node_sizes = [300 + len(str(G.nodes[node]['properties'])) * 10 for node in G.nodes()]
            node_colors = ['lightblue' if idx % 2 == 0 else 'lightgreen' for idx in range(len(G.nodes()))]
            
            nx.draw_networkx_nodes(G, pos, 
                                    node_color=node_colors, 
                                    node_size=node_sizes, 
                                    alpha=0.8)
            
            # Draw edges
            nx.draw_networkx_edges(G, pos, 
                                    edge_color='gray', 
                                    arrows=True,
                                    width=1.5)
            
            # Draw labels
            nx.draw_networkx_labels(G, pos, 
                                     labels={node: G.nodes[node]['label'] for node in G.nodes()},
                                     font_size=8)
            
            plt.title("Neo4j Graph Visualization")
            plt.axis('off')
            
            # Save to buffer
            buffer = io.BytesIO()
            plt.savefig(buffer, format='png', dpi=300, bbox_inches='tight')
            buffer.seek(0)
            image_png = buffer.getvalue()
            buffer.close()
            plt.close()  # Close the plot to free memory
            
            # Encode
            graphic = base64.b64encode(image_png).decode('utf-8')
            return f"data:image/png;base64,{graphic}"
        
        except Exception as e:
            print(f"Error in graph visualization: {e}")
            return f"Error visualizing graph: {e}"

    def close(self):
        """Close the Neo4j driver connection"""
        self.driver.close()

def create_gradio_interface(uri, username, password):
    """
    Create a Gradio interface for Neo4j graph visualization
    
    Args:
        uri (str): Neo4j database URI
        username (str): Neo4j username
        password (str): Neo4j password
    """
    visualizer = Neo4jGraphVisualizer(uri, username, password)
    
    def visualize_graph():
        try:
            graph_image = visualizer.visualize_graph()
            return graph_image
        except Exception as e:
            return f"Error: {str(e)}"
    
    # Create Gradio interface
    iface = gr.Interface(
        fn=visualize_graph,
        inputs=[],
        outputs=gr.Image(type="filepath"),
        title="Neo4j Graph Visualization",
        description="Visualize graph data from Neo4j database"
    )
    
    return iface, visualizer

# Configuration (replace with your actual Neo4j credentials)
NEO4J_URI="neo4j+s://b96332bd.databases.neo4j.io"
NEO4J_USERNAME="neo4j"
NEO4J_PASSWORD="qviTdN6cw66AjIv6lu7kXcsN4keYPdXc2gAWuIoB8T4"
AURA_INSTANCEID="b96332bd"
AURA_INSTANCENAME="Instance01"

def main():
    # Create Gradio interface
    interface, visualizer = create_gradio_interface(
        NEO4J_URI, 
        NEO4J_USERNAME, 
        NEO4J_PASSWORD
    )
    
    try:
        # Launch the interface
        interface.launch(server_name='0.0.0.0', server_port=7860)
    except Exception as e:
        print(f"Error launching interface: {e}")
    finally:
        # Ensure driver is closed
        visualizer.close()

if __name__ == "__main__":
    main()