File size: 6,801 Bytes
018441b
a8ede2f
 
 
 
dc1ba50
018441b
 
 
 
 
 
 
 
 
 
43578e7
018441b
dc1ba50
 
 
 
d01d881
 
dc1ba50
a774132
d01d881
dc1ba50
a774132
23681e2
 
a774132
afca22e
34d4200
 
a774132
5cdba42
 
a774132
 
 
5cdba42
a774132
ca9ece0
 
a8ede2f
 
 
 
 
 
 
 
 
 
 
 
 
018441b
 
 
 
 
3e9bbdf
018441b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8ede2f
61c2746
a8ede2f
 
 
 
 
 
 
 
 
 
 
018441b
a8ede2f
dc1ba50
a8ede2f
 
 
018441b
 
 
 
 
a8ede2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1ba50
018441b
 
 
 
 
dc1ba50
018441b
dc1ba50
018441b
 
 
 
 
 
 
dc1ba50
 
 
 
018441b
 
 
 
 
 
 
 
 
 
 
 
a8ede2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


class Tasks(Enum):
    # arc = Task("arc:challenge", "acc_norm", "ARC")
    # hellaswag = Task("hellaswag", "acc_norm", "HellaSwag")
    # mmlu = Task("hendrycksTest", "acc", "MMLU")
    # truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
    # winogrande = Task("winogrande", "acc", "Winogrande")
    # gsm8k = Task("gsm8k", "acc", "GSM8K")
    # drop = Task("drop", "f1", "DROP")

    nqopen = Task("nq_open", "em", "NQ Open")
    triviaqa = Task("triviaqa", "em", "TriviaQA")

    truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
    truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")

    halueval_qa = Task("halueval_qa", "acc", "HaluEval QA")
    halueval_summ = Task("halueval_summarization", "acc", "HaluEval Summ")
    halueval_dial = Task("halueval_dialogue", "acc", "HaluEval Dial")

    xsum = Task("xsum", "factKB", "XSum")
    cnndm = Task("cnndm", "factKB", "CNN/DM")

    memotrap = Task("memo-trap", "acc", "MemoTrap")

    ifeval = Task("ifeval", "prompt_level_strict_acc", "IFEval")

    #truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
    #truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")

# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False

auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


@dataclass
class ModelDetails:
    name: str
    symbol: str = ""  # emoji, only for the model type


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float32 = ModelDetails("float32")
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    qt_8bit = ModelDetails("8bit")
    qt_4bit = ModelDetails("4bit")
    qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    @staticmethod
    def from_str(precision: str):
        if precision in ["torch.float32", "float32"]:
            return Precision.float32
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["8bit"]:
            return Precision.qt_8bit
        if precision in ["4bit"]:
            return Precision.qt_4bit
        if precision in ["GPTQ", "None"]:
            return Precision.qt_GPTQ
        return Precision.Unknown
        

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}