pminervini commited on
Commit
620ce47
·
1 Parent(s): 2697603
src/backend/run_eval_suite.py CHANGED
@@ -5,10 +5,7 @@ from src.backend.manage_requests import EvalRequest
5
 
6
  from src.backend.tasks.xsum.task import XSum
7
  from src.backend.tasks.cnndm.task import CNNDM
8
-
9
- import logging
10
-
11
- logging.getLogger("openai").setLevel(logging.WARNING)
12
 
13
 
14
  def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict:
 
5
 
6
  from src.backend.tasks.xsum.task import XSum
7
  from src.backend.tasks.cnndm.task import CNNDM
8
+ from src.backend.tasks.selfcheckgpt.task import SelfCheckGpt
 
 
 
9
 
10
 
11
  def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict:
src/backend/tasks/cnndm/task.py CHANGED
@@ -141,6 +141,8 @@ class CNNDM(Task):
141
  # all_refs = true_refs + false_refs
142
 
143
  document = doc["article"]
 
 
144
  true_refs = [doc["highlights"]]
145
  all_refs = true_refs
146
 
 
141
  # all_refs = true_refs + false_refs
142
 
143
  document = doc["article"]
144
+ gold_summary = doc["highlights"]
145
+
146
  true_refs = [doc["highlights"]]
147
  all_refs = true_refs
148
 
src/backend/tasks/selfcheckgpt/task.py CHANGED
@@ -1,12 +1,13 @@
1
  import os
2
  from typing import Union, List
3
 
4
-
5
  from lm_eval.api.task import Task
6
  from lm_eval.api.instance import Instance
7
  from lm_eval.api.registry import register_task
8
  from lm_eval.api.metrics import mean
9
 
 
 
10
  import spacy
11
  from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram
12
 
@@ -16,7 +17,7 @@ class SelfCheckGpt(Task):
16
  VERSION = 0.0
17
  DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination"
18
  DATASET_NAME = None
19
- OUTPUT_TYPE = 'generate_until'
20
  def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None):
21
  super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
22
  self.generation_kwargs = {"temperature": 0.0, "do_sample": False}
@@ -24,7 +25,7 @@ class SelfCheckGpt(Task):
24
  self.generation_kwargs_sampling = {"temperature": 1.0, "do_sample": False}
25
 
26
  self.selfcheckgpt_type = os.environ.get('SELFCHECKGPTTYPE', 'SelfCheckNgram')
27
- self.selfcheckgpt_device = os.environ.get('SELFCHECKGPTDEVICE', 'cpu')
28
  self.selfcheckgpt_nlp = spacy.load("en_core_web_sm")
29
 
30
  if self.selfcheckgpt_type == 'SelfCheckNgram':
@@ -59,34 +60,19 @@ class SelfCheckGpt(Task):
59
  answer = doc['wiki_bio_text']
60
  return answer
61
 
62
- def construct_requests(
63
- self, doc: dict, ctx: str, **kwargs
64
- ) -> Union[List[Instance], Instance]:
65
  arguments = (ctx, self.generation_kwargs)
66
  request_list = [
67
- Instance(
68
- request_type=self.OUTPUT_TYPE,
69
- doc=doc,
70
- arguments=arguments,
71
- idx=0,
72
- **kwargs
73
- ),
74
  ]
75
  sampling_arguments = (ctx, self.generation_kwargs_sampling)
76
  request_list.extend([
77
- Instance(
78
- request_type=self.OUTPUT_TYPE,
79
- doc=doc,
80
- arguments=sampling_arguments,
81
- idx=idx,
82
- **kwargs
83
- )
84
  for idx in range(1, self.generation_kwargs_sampling_number+1)
85
  ]
86
  )
87
  return request_list
88
 
89
-
90
  def process_results(self, doc, results):
91
  response_temperature_0 = results[0]
92
  other_responses = results[1:]
@@ -104,24 +90,14 @@ class SelfCheckGpt(Task):
104
  'max-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_max_neg_logprob']}
105
 
106
  elif self.selfcheckgpt_type == 'SelfCheckBERTScore':
107
- selfcheckgpt_scores = self.selfcheckgpt.predict(
108
- sentences = sentences,
109
- sampled_passages = other_responses,
110
- )
111
  elif self.selfcheckgpt_type == 'SelfCheckMQAG':
112
- selfcheckgpt_scores = self.selfcheckgpt.predict(
113
- sentences = sentences,
114
- sampled_passages = other_responses,
115
- )
116
  elif self.selfcheckgpt_type == 'SelfCheckNLI':
117
- selfcheckgpt_scores = self.selfcheckgpt.predict(
118
- sentences = sentences,
119
- passage = response_temperature_0,
120
- sampled_passages = other_responses,
121
- num_questions_per_sent = 5, # number of questions to be drawn
122
- scoring_method = 'bayes_with_alpha', # options = 'counting', 'bayes', 'bayes_with_alpha'
123
- beta1 = 0.8, beta2 = 0.8, # additional params depending on scoring_method
124
- )
125
 
126
  selfcheckgpt_scores_avg = sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0
127
  selfcheckgpt_scores_max = max(selfcheckgpt_scores)
 
1
  import os
2
  from typing import Union, List
3
 
 
4
  from lm_eval.api.task import Task
5
  from lm_eval.api.instance import Instance
6
  from lm_eval.api.registry import register_task
7
  from lm_eval.api.metrics import mean
8
 
9
+ from src.backend.envs import DEVICE
10
+
11
  import spacy
12
  from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram
13
 
 
17
  VERSION = 0.0
18
  DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination"
19
  DATASET_NAME = None
20
+
21
  def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None):
22
  super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
23
  self.generation_kwargs = {"temperature": 0.0, "do_sample": False}
 
25
  self.generation_kwargs_sampling = {"temperature": 1.0, "do_sample": False}
26
 
27
  self.selfcheckgpt_type = os.environ.get('SELFCHECKGPTTYPE', 'SelfCheckNgram')
28
+ self.selfcheckgpt_device = os.environ.get('SELFCHECKGPTDEVICE', DEVICE)
29
  self.selfcheckgpt_nlp = spacy.load("en_core_web_sm")
30
 
31
  if self.selfcheckgpt_type == 'SelfCheckNgram':
 
60
  answer = doc['wiki_bio_text']
61
  return answer
62
 
63
+ def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
 
 
64
  arguments = (ctx, self.generation_kwargs)
65
  request_list = [
66
+ Instance(request_type='generate_until', doc=doc, arguments=arguments, idx=0, **kwargs),
 
 
 
 
 
 
67
  ]
68
  sampling_arguments = (ctx, self.generation_kwargs_sampling)
69
  request_list.extend([
70
+ Instance(request_type='generate_until', doc=doc, arguments=sampling_arguments, idx=idx, **kwargs)
 
 
 
 
 
 
71
  for idx in range(1, self.generation_kwargs_sampling_number+1)
72
  ]
73
  )
74
  return request_list
75
 
 
76
  def process_results(self, doc, results):
77
  response_temperature_0 = results[0]
78
  other_responses = results[1:]
 
90
  'max-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_max_neg_logprob']}
91
 
92
  elif self.selfcheckgpt_type == 'SelfCheckBERTScore':
93
+ selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses)
 
 
 
94
  elif self.selfcheckgpt_type == 'SelfCheckMQAG':
95
+ selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses)
 
 
 
96
  elif self.selfcheckgpt_type == 'SelfCheckNLI':
97
+ selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses,
98
+ num_questions_per_sent=5, # number of questions to be drawn
99
+ scoring_method='bayes_with_alpha', # options = 'counting', 'bayes', 'bayes_with_alpha'
100
+ beta1=0.8, beta2=0.8) # additional params depending on scoring_method
 
 
 
 
101
 
102
  selfcheckgpt_scores_avg = sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0
103
  selfcheckgpt_scores_max = max(selfcheckgpt_scores)