import os import torch from dataclasses import dataclass from enum import Enum from src.envs import CACHE_PATH @dataclass class Task: benchmark: str metric: str col_name: str num_fewshot: int class Tasks(Enum): # task_key in the json file, metric_key in the json file, name to display in the leaderboard # task0 = Task("anli_r1", "acc", "ANLI") # task1 = Task("logiqa", "acc_norm", "LogiQA") task0 = Task("nq_open", "em", "NQ Open", 64) # 64, as in the ATLAS paper task1 = Task("triviaqa", "em", "TriviaQA", 64) # 64, as in the ATLAS paper task2 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1", 0) task3 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2", 0) # TruthfulQA is intended as a zero-shot benchmark [5, 47]. https://owainevans.github.io/pdfs/truthfulQA_lin_evans.pdf task4 = Task("halueval_qa", "acc", "HaluEval QA", 0) # NUM_FEWSHOT = 64 # Change with your few shot EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") DEVICE = "cuda" if torch.cuda.is_available() else 'cpu' LIMIT = None # Testing; needs to be None