felix commited on
Commit
5f65cec
·
1 Parent(s): ae85651

update with app.py

Browse files
Files changed (1) hide show
  1. app.py +373 -294
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import json
2
  import os
 
3
 
4
  import gradio as gr
5
  import pandas as pd
@@ -85,13 +86,13 @@ def change_tab(query_param: str):
85
 
86
  # Searching and filtering
87
  def update_table(
88
- hidden_df: pd.DataFrame,
89
- columns: list,
90
- type_query: list,
91
- precision_query: str,
92
- size_query: list,
93
- show_deleted: bool,
94
- query: str,
95
  ):
96
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
97
  filtered_df = filter_queries(query, filtered_df)
@@ -111,7 +112,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
111
  # We use COLS to maintain sorting
112
  filtered_df = df[
113
  always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
114
- ]
115
  return filtered_df
116
 
117
 
@@ -136,7 +137,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
136
 
137
 
138
  def filter_models(
139
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
140
  ) -> pd.DataFrame:
141
  # Show all models
142
  if show_deleted:
@@ -156,293 +157,371 @@ def filter_models(
156
  return filtered_df
157
 
158
 
159
- demo = gr.Blocks(css=custom_css)
160
- with demo:
161
- gr.HTML(TITLE)
162
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
163
-
164
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
165
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
166
- with gr.Row():
167
- with gr.Column():
168
- with gr.Row():
169
- search_bar = gr.Textbox(
170
- placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
171
- show_label=False,
172
- elem_id="search-bar",
173
- )
174
- with gr.Row():
175
- shown_columns = gr.CheckboxGroup(
176
- choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dummy],
177
- value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden],
178
- label="Select columns to show",
179
- elem_id="column-select",
180
- interactive=True,
181
- )
182
- with gr.Row():
183
- deleted_models_visibility = gr.Checkbox(
184
- value=False, label="Show gated/private/deleted models", interactive=True
185
- )
186
- with gr.Column(min_width=320):
187
- with gr.Box(elem_id="box-filter"):
188
- filter_columns_type = gr.CheckboxGroup(
189
- label="Model types",
190
- choices=[t.to_str() for t in ModelType],
191
- value=[t.to_str() for t in ModelType],
192
- interactive=True,
193
- elem_id="filter-columns-type",
194
- )
195
- filter_columns_precision = gr.CheckboxGroup(
196
- label="Precision",
197
- choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
198
- value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
199
- interactive=True,
200
- elem_id="filter-columns-precision",
201
- )
202
- filter_columns_size = gr.CheckboxGroup(
203
- label="Model sizes (in billions of parameters)",
204
- choices=list(NUMERIC_INTERVALS.keys()),
205
- value=list(NUMERIC_INTERVALS.keys()),
206
- interactive=True,
207
- elem_id="filter-columns-size",
208
- )
209
-
210
- leaderboard_table = gr.components.Dataframe(
211
- value=leaderboard_df[
212
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
213
- + shown_columns.value
214
- + [AutoEvalColumn.dummy.name]
215
- ],
216
- headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
217
- datatype=TYPES,
218
- max_rows=None,
219
- elem_id="leaderboard-table",
220
- interactive=False,
221
- visible=True,
222
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
 
224
- # Dummy leaderboard for handling the case when the user uses backspace key
225
- hidden_leaderboard_table_for_search = gr.components.Dataframe(
226
- value=original_df[COLS],
227
- headers=COLS,
228
- datatype=TYPES,
229
- max_rows=None,
230
- visible=False,
231
- )
232
- search_bar.submit(
233
- update_table,
234
- [
235
- hidden_leaderboard_table_for_search,
236
- shown_columns,
237
- filter_columns_type,
238
- filter_columns_precision,
239
- filter_columns_size,
240
- deleted_models_visibility,
241
- search_bar,
242
- ],
243
- leaderboard_table,
244
- )
245
- shown_columns.change(
246
- update_table,
247
- [
248
- hidden_leaderboard_table_for_search,
249
- shown_columns,
250
- filter_columns_type,
251
- filter_columns_precision,
252
- filter_columns_size,
253
- deleted_models_visibility,
254
- search_bar,
255
- ],
256
- leaderboard_table,
257
- queue=True,
258
- )
259
- filter_columns_type.change(
260
- update_table,
261
- [
262
- hidden_leaderboard_table_for_search,
263
- shown_columns,
264
- filter_columns_type,
265
- filter_columns_precision,
266
- filter_columns_size,
267
- deleted_models_visibility,
268
- search_bar,
269
- ],
270
- leaderboard_table,
271
- queue=True,
272
- )
273
- filter_columns_precision.change(
274
- update_table,
275
- [
276
- hidden_leaderboard_table_for_search,
277
- shown_columns,
278
- filter_columns_type,
279
- filter_columns_precision,
280
- filter_columns_size,
281
- deleted_models_visibility,
282
- search_bar,
283
- ],
284
- leaderboard_table,
285
- queue=True,
286
- )
287
- filter_columns_size.change(
288
- update_table,
289
- [
290
- hidden_leaderboard_table_for_search,
291
- shown_columns,
292
- filter_columns_type,
293
- filter_columns_precision,
294
- filter_columns_size,
295
- deleted_models_visibility,
296
- search_bar,
297
- ],
298
- leaderboard_table,
299
- queue=True,
300
- )
301
- deleted_models_visibility.change(
302
- update_table,
303
- [
304
- hidden_leaderboard_table_for_search,
305
- shown_columns,
306
- filter_columns_type,
307
- filter_columns_precision,
308
- filter_columns_size,
309
- deleted_models_visibility,
310
- search_bar,
311
- ],
312
- leaderboard_table,
313
- queue=True,
314
- )
315
 
316
- # with gr.TabItem("📈
317
- # evolution through time", elem_id="llm-benchmark-tab-table", id=4):
318
- # with gr.Row():
319
- # with gr.Column():
320
- # chart = create_metric_plot_obj(
321
- # plot_df,
322
- # ["Average ⬆️"],
323
- # HUMAN_BASELINES,
324
- # title="Average of Top Scores and Human Baseline Over Time",
325
- # )
326
- # gr.Plot(value=chart, interactive=False, width=500, height=500)
327
- # with gr.Column():
328
- # chart = create_metric_plot_obj(
329
- # plot_df,
330
- # ["ARC", "HellaSwag", "MMLU", "TruthfulQA", "Winogrande", "GSM8K", "DROP"],
331
- # HUMAN_BASELINES,
332
- # title="Top Scores and Human Baseline Over Time",
333
- # )
334
- # gr.Plot(value=chart, interactive=False, width=500, height=500)
335
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
336
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
337
-
338
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
339
- with gr.Column():
340
- with gr.Row():
341
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
342
-
343
- with gr.Column():
344
- with gr.Accordion(
345
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
346
- open=False,
347
- ):
348
- with gr.Row():
349
- finished_eval_table = gr.components.Dataframe(
350
- value=finished_eval_queue_df,
351
- headers=EVAL_COLS,
352
- datatype=EVAL_TYPES,
353
- max_rows=5,
354
- )
355
- with gr.Accordion(
356
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
357
- open=False,
358
- ):
359
- with gr.Row():
360
- running_eval_table = gr.components.Dataframe(
361
- value=running_eval_queue_df,
362
- headers=EVAL_COLS,
363
- datatype=EVAL_TYPES,
364
- max_rows=5,
365
- )
366
-
367
- with gr.Accordion(
368
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
369
- open=False,
370
- ):
371
- with gr.Row():
372
- pending_eval_table = gr.components.Dataframe(
373
- value=pending_eval_queue_df,
374
- headers=EVAL_COLS,
375
- datatype=EVAL_TYPES,
376
- max_rows=5,
377
- )
378
- with gr.Row():
379
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
380
-
381
- with gr.Row():
382
- with gr.Column():
383
- model_name_textbox = gr.Textbox(label="Model name")
384
- revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
385
- private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
386
- model_type = gr.Dropdown(
387
- choices=[t.to_str(" : ") for t in ModelType],
388
- label="Model type",
389
- multiselect=False,
390
- value=None,
391
- interactive=True,
392
- )
393
-
394
- with gr.Column():
395
- precision = gr.Dropdown(
396
- choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ"],
397
- label="Precision",
398
- multiselect=False,
399
- value="float16",
400
- interactive=True,
401
- )
402
- weight_type = gr.Dropdown(
403
- choices=["Original", "Delta", "Adapter"],
404
- label="Weights type",
405
- multiselect=False,
406
- value="Original",
407
- interactive=True,
408
- )
409
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
410
-
411
- submit_button = gr.Button("Submit Eval")
412
- submission_result = gr.Markdown()
413
- submit_button.click(
414
- add_new_eval,
415
- [
416
- model_name_textbox,
417
- base_model_name_textbox,
418
- revision_name_textbox,
419
- precision,
420
- private,
421
- weight_type,
422
- model_type,
423
- ],
424
- submission_result,
425
- )
426
 
427
- with gr.Row():
428
- with gr.Accordion("📙 Citation", open=False):
429
- citation_button = gr.Textbox(
430
- value=CITATION_BUTTON_TEXT,
431
- label=CITATION_BUTTON_LABEL,
432
- lines=20,
433
- elem_id="citation-button",
434
- show_copy_button=True,
435
- )
436
 
437
- dummy = gr.Textbox(visible=False)
438
- demo.load(
439
- change_tab,
440
- dummy,
441
- tabs,
442
- _js=get_window_url_params,
443
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
 
445
- scheduler = BackgroundScheduler()
446
- scheduler.add_job(restart_space, "interval", seconds=1800)
447
- scheduler.start()
448
- demo.queue(concurrency_count=40).launch()
 
1
  import json
2
  import os
3
+ from datetime import datetime, timezone
4
 
5
  import gradio as gr
6
  import pandas as pd
 
86
 
87
  # Searching and filtering
88
  def update_table(
89
+ hidden_df: pd.DataFrame,
90
+ columns: list,
91
+ type_query: list,
92
+ precision_query: str,
93
+ size_query: list,
94
+ show_deleted: bool,
95
+ query: str,
96
  ):
97
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
98
  filtered_df = filter_queries(query, filtered_df)
 
112
  # We use COLS to maintain sorting
113
  filtered_df = df[
114
  always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
115
+ ]
116
  return filtered_df
117
 
118
 
 
137
 
138
 
139
  def filter_models(
140
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
141
  ) -> pd.DataFrame:
142
  # Show all models
143
  if show_deleted:
 
157
  return filtered_df
158
 
159
 
160
+ # demo = gr.Blocks(css=custom_css)
161
+ # with demo:
162
+ # gr.HTML(TITLE)
163
+ # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
164
+ #
165
+ # with gr.Tabs(elem_classes="tab-buttons") as tabs:
166
+ # with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
167
+ # with gr.Row():
168
+ # with gr.Column():
169
+ # with gr.Row():
170
+ # search_bar = gr.Textbox(
171
+ # placeholder=" 🔍 Search for your model and press ENTER...",
172
+ # show_label=False,
173
+ # elem_id="search-bar",
174
+ # )
175
+ # with gr.Row():
176
+ # shown_columns = gr.CheckboxGroup(
177
+ # choices=[
178
+ # c
179
+ # for c in COLS
180
+ # if c
181
+ # not in [
182
+ # AutoEvalColumn.dummy.name,
183
+ # AutoEvalColumn.model.name,
184
+ # AutoEvalColumn.model_type_symbol.name,
185
+ # AutoEvalColumn.still_on_hub.name,
186
+ # ]
187
+ # ],
188
+ # value=[
189
+ # c
190
+ # for c in COLS_LITE
191
+ # if c
192
+ # not in [
193
+ # AutoEvalColumn.dummy.name,
194
+ # AutoEvalColumn.model.name,
195
+ # AutoEvalColumn.model_type_symbol.name,
196
+ # AutoEvalColumn.still_on_hub.name,
197
+ # ]
198
+ # ],
199
+ # label="Select columns to show",
200
+ # elem_id="column-select",
201
+ # interactive=True,
202
+ # )
203
+ # with gr.Row():
204
+ # deleted_models_visibility = gr.Checkbox(
205
+ # value=True, label="Show gated/private/deleted models", interactive=True
206
+ # )
207
+ # with gr.Column(min_width=320):
208
+ # with gr.Box(elem_id="box-filter"):
209
+ # filter_columns_type = gr.CheckboxGroup(
210
+ # label="Model types",
211
+ # choices=[
212
+ # ModelType.PT.to_str(),
213
+ # ModelType.FT.to_str(),
214
+ # ModelType.IFT.to_str(),
215
+ # ModelType.RL.to_str(),
216
+ # ],
217
+ # value=[
218
+ # ModelType.PT.to_str(),
219
+ # ModelType.FT.to_str(),
220
+ # ModelType.IFT.to_str(),
221
+ # ModelType.RL.to_str(),
222
+ # ],
223
+ # interactive=True,
224
+ # elem_id="filter-columns-type",
225
+ # )
226
+ # filter_columns_precision = gr.CheckboxGroup(
227
+ # label="Precision",
228
+ # choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
229
+ # value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
230
+ # interactive=True,
231
+ # elem_id="filter-columns-precision",
232
+ # )
233
+ # filter_columns_size = gr.CheckboxGroup(
234
+ # label="Model sizes",
235
+ # choices=list(NUMERIC_INTERVALS.keys()),
236
+ # value=list(NUMERIC_INTERVALS.keys()),
237
+ # interactive=True,
238
+ # elem_id="filter-columns-size",
239
+ # )
240
+ #
241
+ # leaderboard_table = gr.components.Dataframe(
242
+ # value=leaderboard_df[
243
+ # [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
244
+ # + shown_columns.value
245
+ # + [AutoEvalColumn.dummy.name]
246
+ # ],
247
+ # headers=[
248
+ # AutoEvalColumn.model_type_symbol.name,
249
+ # AutoEvalColumn.model.name,
250
+ # ]
251
+ # + shown_columns.value
252
+ # + [AutoEvalColumn.dummy.name],
253
+ # datatype=TYPES,
254
+ # max_rows=None,
255
+ # elem_id="leaderboard-table",
256
+ # interactive=False,
257
+ # visible=True,
258
+ # )
259
+ #
260
+ # # Dummy leaderboard for handling the case when the user uses backspace key
261
+ # hidden_leaderboard_table_for_search = gr.components.Dataframe(
262
+ # value=original_df,
263
+ # headers=COLS,
264
+ # datatype=TYPES,
265
+ # max_rows=None,
266
+ # visible=False,
267
+ # )
268
+ # search_bar.submit(
269
+ # update_table,
270
+ # [
271
+ # hidden_leaderboard_table_for_search,
272
+ # leaderboard_table,
273
+ # shown_columns,
274
+ # filter_columns_type,
275
+ # filter_columns_precision,
276
+ # filter_columns_size,
277
+ # deleted_models_visibility,
278
+ # search_bar,
279
+ # ],
280
+ # leaderboard_table,
281
+ # )
282
+ # shown_columns.change(
283
+ # update_table,
284
+ # [
285
+ # hidden_leaderboard_table_for_search,
286
+ # leaderboard_table,
287
+ # shown_columns,
288
+ # filter_columns_type,
289
+ # filter_columns_precision,
290
+ # filter_columns_size,
291
+ # deleted_models_visibility,
292
+ # search_bar,
293
+ # ],
294
+ # leaderboard_table,
295
+ # queue=True,
296
+ # )
297
+ # filter_columns_type.change(
298
+ # update_table,
299
+ # [
300
+ # hidden_leaderboard_table_for_search,
301
+ # leaderboard_table,
302
+ # shown_columns,
303
+ # filter_columns_type,
304
+ # filter_columns_precision,
305
+ # filter_columns_size,
306
+ # deleted_models_visibility,
307
+ # search_bar,
308
+ # ],
309
+ # leaderboard_table,
310
+ # queue=True,
311
+ # )
312
+ # filter_columns_precision.change(
313
+ # update_table,
314
+ # [
315
+ # hidden_leaderboard_table_for_search,
316
+ # leaderboard_table,
317
+ # shown_columns,
318
+ # filter_columns_type,
319
+ # filter_columns_precision,
320
+ # filter_columns_size,
321
+ # deleted_models_visibility,
322
+ # search_bar,
323
+ # ],
324
+ # leaderboard_table,
325
+ # queue=True,
326
+ # )
327
+ # filter_columns_size.change(
328
+ # update_table,
329
+ # [
330
+ # hidden_leaderboard_table_for_search,
331
+ # leaderboard_table,
332
+ # shown_columns,
333
+ # filter_columns_type,
334
+ # filter_columns_precision,
335
+ # filter_columns_size,
336
+ # deleted_models_visibility,
337
+ # search_bar,
338
+ # ],
339
+ # leaderboard_table,
340
+ # queue=True,
341
+ # )
342
+ # deleted_models_visibility.change(
343
+ # update_table,
344
+ # [
345
+ # hidden_leaderboard_table_for_search,
346
+ # leaderboard_table,
347
+ # shown_columns,
348
+ # filter_columns_type,
349
+ # filter_columns_precision,
350
+ # filter_columns_size,
351
+ # deleted_models_visibility,
352
+ # search_bar,
353
+ # ],
354
+ # leaderboard_table,
355
+ # queue=True,
356
+ # )
357
+ # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
358
+ # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
359
+ #
360
+ # with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
361
+ # with gr.Column():
362
+ # with gr.Row():
363
+ # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
364
+ #
365
+ # with gr.Column():
366
+ # with gr.Accordion(
367
+ # f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
368
+ # open=False,
369
+ # ):
370
+ # with gr.Row():
371
+ # finished_eval_table = gr.components.Dataframe(
372
+ # value=finished_eval_queue_df,
373
+ # headers=EVAL_COLS,
374
+ # datatype=EVAL_TYPES,
375
+ # max_rows=5,
376
+ # )
377
+ # with gr.Accordion(
378
+ # f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
379
+ # open=False,
380
+ # ):
381
+ # with gr.Row():
382
+ # running_eval_table = gr.components.Dataframe(
383
+ # value=running_eval_queue_df,
384
+ # headers=EVAL_COLS,
385
+ # datatype=EVAL_TYPES,
386
+ # max_rows=5,
387
+ # )
388
+ #
389
+ # with gr.Accordion(
390
+ # f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
391
+ # open=False,
392
+ # ):
393
+ # with gr.Row():
394
+ # pending_eval_table = gr.components.Dataframe(
395
+ # value=pending_eval_queue_df,
396
+ # headers=EVAL_COLS,
397
+ # datatype=EVAL_TYPES,
398
+ # max_rows=5,
399
+ # )
400
+ # with gr.Row():
401
+ # gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
402
+ #
403
+ # with gr.Row():
404
+ # with gr.Column():
405
+ # model_name_textbox = gr.Textbox(label="Model name")
406
+ # revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
407
+ # private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
408
+ # model_type = gr.Dropdown(
409
+ # choices=[
410
+ # ModelType.PT.to_str(" : "),
411
+ # ModelType.FT.to_str(" : "),
412
+ # ModelType.IFT.to_str(" : "),
413
+ # ModelType.RL.to_str(" : "),
414
+ # ],
415
+ # label="Model type",
416
+ # multiselect=False,
417
+ # value=None,
418
+ # interactive=True,
419
+ # )
420
+ #
421
+ # with gr.Column():
422
+ # precision = gr.Dropdown(
423
+ # choices=[
424
+ # "float16",
425
+ # "bfloat16",
426
+ # "8bit (LLM.int8)",
427
+ # "4bit (QLoRA / FP4)",
428
+ # "GPTQ"
429
+ # ],
430
+ # label="Precision",
431
+ # multiselect=False,
432
+ # value="float16",
433
+ # interactive=True,
434
+ # )
435
+ # weight_type = gr.Dropdown(
436
+ # choices=["Original", "Delta", "Adapter"],
437
+ # label="Weights type",
438
+ # multiselect=False,
439
+ # value="Original",
440
+ # interactive=True,
441
+ # )
442
+ # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
443
+ #
444
+ # submit_button = gr.Button("Submit Eval")
445
+ # submission_result = gr.Markdown()
446
+ # submit_button.click(
447
+ # add_new_eval,
448
+ # [
449
+ # model_name_textbox,
450
+ # base_model_name_textbox,
451
+ # revision_name_textbox,
452
+ # precision,
453
+ # private,
454
+ # weight_type,
455
+ # model_type,
456
+ # ],
457
+ # submission_result,
458
+ # )
459
+ #
460
+ # with gr.Row():
461
+ # with gr.Accordion("📙 Citation", open=False):
462
+ # citation_button = gr.Textbox(
463
+ # value=CITATION_BUTTON_TEXT,
464
+ # label=CITATION_BUTTON_LABEL,
465
+ # elem_id="citation-button",
466
+ # ).style(show_copy_button=True)
467
+ #
468
+ # dummy = gr.Textbox(visible=False)
469
+ # demo.load(
470
+ # change_tab,
471
+ # dummy,
472
+ # tabs,
473
+ # _js=get_window_url_params,
474
+ # )
475
+
476
+ dummy1 = gr.Textbox(visible=False)
477
+
478
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
479
+ headers=COLS,
480
+ datatype=TYPES,
481
+ max_rows=None,
482
+ visible=False,
483
+ )
484
 
485
+ def display(x, y):
486
+ return original_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
 
488
+ INTRODUCTION_TEXT = """
489
+ This is a copied space from Open Source LLM leaderboard. Instead of displaying
490
+ the results as table the space simply provides a gradio API interface to access
491
+ the full leaderboard data easily.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492
 
493
+ Example python on how to access the data:
494
+ ```python
495
+ from gradio_client import Client
496
+ import json
497
+ client = Client("https://felixz-open-llm-leaderboard.hf.space/")
 
 
 
 
498
 
499
+ json_data = client.predict("","", api_name='/predict')
500
+
501
+ with open(json_data, 'r') as file:
502
+ file_data = file.read()
503
+
504
+ # Load the JSON data
505
+ data = json.loads(file_data)
506
+
507
+ # Get the headers and the data
508
+ headers = data['headers']
509
+ data = data['data']
510
+ ```
511
+
512
+ """
513
+
514
+ interface = gr.Interface(
515
+ fn=display,
516
+ inputs=[ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"),
517
+ dummy1
518
+ ],
519
+ outputs=[hidden_leaderboard_table_for_search]
520
+ )
521
+
522
+ #scheduler = BackgroundScheduler()
523
+ #scheduler.add_job(restart_space, "interval", seconds=12000)
524
+ #scheduler.start()
525
 
526
+ interface.launch()
527
+ #demo.queue(concurrency_count=40).launch()