rodrigomasini commited on
Commit
6a93de9
·
verified ·
1 Parent(s): 2ebb338

Update helper.py

Browse files
Files changed (1) hide show
  1. helper.py +91 -44
helper.py CHANGED
@@ -4,31 +4,39 @@ from typing import Callable
4
  import base64
5
  from openai import OpenAI
6
 
7
- def get_fn(model_name: str, **model_kwargs):
8
- """Create a chat function that uses the OpenAI-compatible endpoint."""
9
 
10
- OPENAI_API_KEY = "-"
11
- client = OpenAI(
12
- base_url=" http://192.222.58.60:8000/v1",
13
- api_key="tela",
14
- )
 
 
 
 
 
 
 
 
 
 
15
 
16
  def predict(
17
  message: str,
18
  history,
19
  system_prompt: str,
20
  temperature: float,
21
- max_tokens: int,
22
- top_p: float,
 
 
23
  ):
24
  try:
25
- messages = []
26
- if system_prompt:
27
- messages.append({"role": "system", "content": system_prompt})
28
  for user_msg, assistant_msg in history:
29
- messages.append({"role": "user", "content": user_msg})
30
- messages.append({"role": "assistant", "content": assistant_msg})
31
- messages.append({"role": "user", "content": message})
32
 
33
  response = client.chat.completions.create(
34
  model=model_name,
@@ -43,58 +51,95 @@ def get_fn(model_name: str, **model_kwargs):
43
 
44
  response_text = ""
45
  for chunk in response:
46
- chunk_message = chunk.choices[0].delta.content
47
- if chunk_message:
48
- response_text += chunk_message
 
 
49
  yield response_text.strip()
 
 
 
 
50
  except Exception as e:
51
  print(f"Error during generation: {str(e)}")
52
  yield f"An error occurred: {str(e)}"
53
 
54
  return predict
55
 
 
56
  def get_image_base64(url: str, ext: str):
57
  with open(url, "rb") as image_file:
58
  encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
59
  return "data:image/" + ext + ";base64," + encoded_string
60
 
 
61
  def handle_user_msg(message: str):
62
- if isinstance(message, str):
63
  return message
64
- elif isinstance(message, dict):
65
- if message.get("files"):
66
  ext = os.path.splitext(message["files"][-1])[1].strip(".")
67
  if ext.lower() in ["png", "jpg", "jpeg", "gif", "pdf"]:
68
  encoded_str = get_image_base64(message["files"][-1], ext)
69
  else:
70
  raise NotImplementedError(f"Not supported file type {ext}")
71
  content = [
72
- {"type": "text", "text": message.get("text", "")},
73
- {
74
- "type": "image_url",
75
- "image_url": {
76
- "url": encoded_str,
77
- }
78
- },
79
- ]
80
  else:
81
- content = message.get("text", "")
82
  return content
83
  else:
84
  raise NotImplementedError
85
 
86
- def get_model_path(name: str = None, model_path: str = None) -> str:
87
- """Get the model name to use with the endpoint."""
88
- if model_path:
89
- return model_path
90
- if name:
91
- return name
92
- raise ValueError("Either name or model_path must be provided")
93
 
94
- def registry(name: str = None, model_path: str = None, **kwargs):
95
- """Create a Gradio ChatInterface."""
96
- model_name = get_model_path(name, model_path)
97
- fn = get_fn(model_name, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
  interface = gr.ChatInterface(
100
  fn=fn,
@@ -105,9 +150,11 @@ def registry(name: str = None, model_path: str = None, **kwargs):
105
  label="System prompt"
106
  ),
107
  gr.Slider(0, 1, 0.7, label="Temperature"),
108
- gr.Slider(128, 4096, 1024, label="Max tokens"),
 
 
109
  gr.Slider(0, 1, 0.95, label="Top P sampling"),
110
  ],
111
  )
112
-
113
- return interface
 
4
  import base64
5
  from openai import OpenAI
6
 
 
 
7
 
8
+
9
+ def get_fn(model_path: str, **model_kwargs):
10
+ """Create a chat function with the specified model."""
11
+
12
+ # instatiate a OpenAI client for a custom endpoint
13
+ try:
14
+ OPENAI_API_KEY = "-"
15
+ client = OpenAI(
16
+ base_url=" http://192.222.58.60:8000/v1",
17
+ api_key="tela",
18
+ )
19
+
20
+ except Exception as e:
21
+ print(f"The api or base url were not definied: {str(e)}")
22
+
23
 
24
  def predict(
25
  message: str,
26
  history,
27
  system_prompt: str,
28
  temperature: float,
29
+ max_new_tokens: int,
30
+ top_k: int,
31
+ repetition_penalty: float,
32
+ top_p: float
33
  ):
34
  try:
35
+ # Format conversation with ChatML format
36
+ instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
 
37
  for user_msg, assistant_msg in history:
38
+ instruction += f'<|im_start|>user\n{user_msg}\n<|im_end|>\n<|im_start|>assistant\n{assistant_msg}\n<|im_end|>\n'
39
+ instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
 
40
 
41
  response = client.chat.completions.create(
42
  model=model_name,
 
51
 
52
  response_text = ""
53
  for chunk in response:
54
+ streamer = chunk.choices[0].delta.content
55
+ for new_token in streamer:
56
+ if new_token in ["<|endoftext|>", "<|im_end|>"]:
57
+ break
58
+ response_text += new_token
59
  yield response_text.strip()
60
+
61
+ if not response_text.strip():
62
+ yield "I apologize, but I was unable to generate a response. Please try again."
63
+
64
  except Exception as e:
65
  print(f"Error during generation: {str(e)}")
66
  yield f"An error occurred: {str(e)}"
67
 
68
  return predict
69
 
70
+
71
  def get_image_base64(url: str, ext: str):
72
  with open(url, "rb") as image_file:
73
  encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
74
  return "data:image/" + ext + ";base64," + encoded_string
75
 
76
+
77
  def handle_user_msg(message: str):
78
+ if type(message) is str:
79
  return message
80
+ elif type(message) is dict:
81
+ if message["files"] is not None and len(message["files"]) > 0:
82
  ext = os.path.splitext(message["files"][-1])[1].strip(".")
83
  if ext.lower() in ["png", "jpg", "jpeg", "gif", "pdf"]:
84
  encoded_str = get_image_base64(message["files"][-1], ext)
85
  else:
86
  raise NotImplementedError(f"Not supported file type {ext}")
87
  content = [
88
+ {"type": "text", "text": message["text"]},
89
+ {
90
+ "type": "image_url",
91
+ "image_url": {
92
+ "url": encoded_str,
93
+ }
94
+ },
95
+ ]
96
  else:
97
+ content = message["text"]
98
  return content
99
  else:
100
  raise NotImplementedError
101
 
 
 
 
 
 
 
 
102
 
103
+ def get_interface_args(pipeline):
104
+ if pipeline == "chat":
105
+ inputs = None
106
+ outputs = None
107
+
108
+ def preprocess(message, history):
109
+ messages = []
110
+ files = None
111
+ for user_msg, assistant_msg in history:
112
+ if assistant_msg is not None:
113
+ messages.append({"role": "user", "content": handle_user_msg(user_msg)})
114
+ messages.append({"role": "assistant", "content": assistant_msg})
115
+ else:
116
+ files = user_msg
117
+ if type(message) is str and files is not None:
118
+ message = {"text":message, "files":files}
119
+ elif type(message) is dict and files is not None:
120
+ if message["files"] is None or len(message["files"]) == 0:
121
+ message["files"] = files
122
+ messages.append({"role": "user", "content": handle_user_msg(message)})
123
+ return {"messages": messages}
124
+
125
+ postprocess = lambda x: x
126
+ else:
127
+ # Add other pipeline types when they will be needed
128
+ raise ValueError(f"Unsupported pipeline type: {pipeline}")
129
+ return inputs, outputs, preprocess, postprocess
130
+
131
+
132
+ def get_pipeline(model_name):
133
+ # Determine the pipeline type based on the model name
134
+ # For simplicity, assuming all models are chat models at the moment
135
+ return "chat"
136
+
137
+
138
+
139
+ def registry(name: str = None, **kwargs):
140
+ """Create a Gradio Interface with similar styling and parameters."""
141
+
142
+ fn = get_fn(name, **kwargs)
143
 
144
  interface = gr.ChatInterface(
145
  fn=fn,
 
150
  label="System prompt"
151
  ),
152
  gr.Slider(0, 1, 0.7, label="Temperature"),
153
+ gr.Slider(128, 4096, 1024, label="Max new tokens"),
154
+ gr.Slider(1, 80, 40, label="Top K sampling"),
155
+ gr.Slider(0, 2, 1.1, label="Repetition penalty"),
156
  gr.Slider(0, 1, 0.95, label="Top P sampling"),
157
  ],
158
  )
159
+
160
+ return interface