Spaces:
Build error
Build error
File size: 26,913 Bytes
3506b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "fac5022c-df54-4824-8c57-98fe045372fd",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-09-02 15:52:58.146880: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 692 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:18:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.148409: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13673 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:19:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.149801: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13673 MB memory: -> device: 2, name: Tesla T4, pci bus id: 0000:35:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.151206: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13673 MB memory: -> device: 3, name: Tesla T4, pci bus id: 0000:36:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.152545: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:4 with 13673 MB memory: -> device: 4, name: Tesla T4, pci bus id: 0000:e7:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.153906: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:5 with 13673 MB memory: -> device: 5, name: Tesla T4, pci bus id: 0000:e8:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.155220: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:6 with 13673 MB memory: -> device: 6, name: Tesla T4, pci bus id: 0000:f4:00.0, compute capability: 7.5\n",
"2024-09-02 15:52:58.156627: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:7 with 13673 MB memory: -> device: 7, name: Tesla T4, pci bus id: 0000:f5:00.0, compute capability: 7.5\n",
"2024-09-02 15:53:08.871520: W external/local_tsl/tsl/framework/bfc_allocator.cc:482] Allocator (GPU_0_bfc) ran out of memory trying to allocate 1.95GiB (rounded to 2097152000)requested by op StatelessRandomNormalV2\n",
"If the cause is memory fragmentation maybe the environment variable 'TF_GPU_ALLOCATOR=cuda_malloc_async' will improve the situation. \n",
"Current allocation summary follows.\n",
"Current allocation summary follows.\n",
"2024-09-02 15:53:08.871548: I external/local_tsl/tsl/framework/bfc_allocator.cc:1039] BFCAllocator dump for GPU_0_bfc\n",
"2024-09-02 15:53:08.871559: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (256): \tTotal Chunks: 6, Chunks in use: 6. 1.5KiB allocated for chunks. 1.5KiB in use in bin. 48B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871566: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (512): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871572: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (1024): \tTotal Chunks: 1, Chunks in use: 1. 1.2KiB allocated for chunks. 1.2KiB in use in bin. 1.0KiB client-requested in use in bin.\n",
"2024-09-02 15:53:08.871577: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (2048): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871582: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (4096): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871586: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (8192): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871591: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (16384): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871596: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (32768): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871600: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (65536): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871605: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (131072): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871609: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (262144): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871613: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (524288): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871618: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (1048576): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871622: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (2097152): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871627: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (4194304): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871631: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (8388608): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871636: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (16777216): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871640: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (33554432): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871645: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (67108864): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871650: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (134217728): \tTotal Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871656: I external/local_tsl/tsl/framework/bfc_allocator.cc:1046] Bin (268435456): \tTotal Chunks: 1, Chunks in use: 0. 692.62MiB allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.\n",
"2024-09-02 15:53:08.871662: I external/local_tsl/tsl/framework/bfc_allocator.cc:1062] Bin for 1.95GiB was 256.00MiB, Chunk State: \n",
"2024-09-02 15:53:08.871670: I external/local_tsl/tsl/framework/bfc_allocator.cc:1068] Size: 692.62MiB | Requested Size: 0B | in_use: 0 | bin_num: 20, prev: Size: 256B | Requested Size: 16B | in_use: 1 | bin_num: -1\n",
"2024-09-02 15:53:08.871674: I external/local_tsl/tsl/framework/bfc_allocator.cc:1075] Next region of size 726269952\n",
"2024-09-02 15:53:08.871681: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000000 of size 256 next 1\n",
"2024-09-02 15:53:08.871685: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000100 of size 1280 next 2\n",
"2024-09-02 15:53:08.871689: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000600 of size 256 next 3\n",
"2024-09-02 15:53:08.871692: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000700 of size 256 next 4\n",
"2024-09-02 15:53:08.871695: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000800 of size 256 next 5\n",
"2024-09-02 15:53:08.871700: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000900 of size 256 next 6\n",
"2024-09-02 15:53:08.871703: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] InUse at 7f7fac000a00 of size 256 next 7\n",
"2024-09-02 15:53:08.871708: I external/local_tsl/tsl/framework/bfc_allocator.cc:1095] Free at 7f7fac000b00 of size 726267136 next 18446744073709551615\n",
"2024-09-02 15:53:08.871713: I external/local_tsl/tsl/framework/bfc_allocator.cc:1100] Summary of in-use Chunks by size: \n",
"2024-09-02 15:53:08.871718: I external/local_tsl/tsl/framework/bfc_allocator.cc:1103] 6 Chunks of size 256 totalling 1.5KiB\n",
"2024-09-02 15:53:08.871723: I external/local_tsl/tsl/framework/bfc_allocator.cc:1103] 1 Chunks of size 1280 totalling 1.2KiB\n",
"2024-09-02 15:53:08.871727: I external/local_tsl/tsl/framework/bfc_allocator.cc:1107] Sum Total of in-use chunks: 2.8KiB\n",
"2024-09-02 15:53:08.871732: I external/local_tsl/tsl/framework/bfc_allocator.cc:1109] Total bytes in pool: 726269952 memory_limit_: 726269952 available bytes: 0 curr_region_allocation_bytes_: 1452539904\n",
"2024-09-02 15:53:08.871740: I external/local_tsl/tsl/framework/bfc_allocator.cc:1114] Stats: \n",
"Limit: 726269952\n",
"InUse: 2816\n",
"MaxInUse: 2816\n",
"NumAllocs: 9\n",
"MaxAllocSize: 1280\n",
"Reserved: 0\n",
"PeakReserved: 0\n",
"LargestFreeBlock: 0\n",
"\n",
"2024-09-02 15:53:08.871746: W external/local_tsl/tsl/framework/bfc_allocator.cc:494] *___________________________________________________________________________________________________\n",
"2024-09-02 15:53:08.871766: W tensorflow/core/framework/op_kernel.cc:1840] OP_REQUIRES failed at stateless_random_ops_v2.cc:64 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[256000,2048] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc\n",
"2024-09-02 15:53:08.871780: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[256000,2048] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc\n"
]
},
{
"ename": "ResourceExhaustedError",
"evalue": "{{function_node __wrapped__StatelessRandomNormalV2_device_/job:localhost/replica:0/task:0/device:GPU:0}} OOM when allocating tensor with shape[256000,2048] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [Op:StatelessRandomNormalV2]",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mResourceExhaustedError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m os\u001b[38;5;241m.\u001b[39menviron[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mKAGGLE_KEY\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m9a33b6e88bcb6058b1281d777fa6808d\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mkeras_nlp\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m gemma_lm \u001b[38;5;241m=\u001b[39m \u001b[43mkeras_nlp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodels\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mGemmaCausalLM\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_preset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgemma_2b_en\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m gemma_lm\u001b[38;5;241m.\u001b[39mgenerate(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mKeras is a\u001b[39m\u001b[38;5;124m\"\u001b[39m, max_length\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m30\u001b[39m)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras_nlp/src/models/task.py:264\u001b[0m, in \u001b[0;36mTask.from_preset\u001b[0;34m(cls, preset, load_weights, **kwargs)\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[1;32m 263\u001b[0m config_overrides[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 264\u001b[0m backbone \u001b[38;5;241m=\u001b[39m \u001b[43mbackbone_preset_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_preset\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 265\u001b[0m \u001b[43m \u001b[49m\u001b[43mpreset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 266\u001b[0m \u001b[43m \u001b[49m\u001b[43mload_weights\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_weights\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 267\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_overrides\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_overrides\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 268\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 269\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpreprocessor\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[1;32m 270\u001b[0m preprocessor \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpreprocessor\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras_nlp/src/models/backbone.py:190\u001b[0m, in \u001b[0;36mBackbone.from_preset\u001b[0;34m(cls, preset, load_weights, **kwargs)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(preset_cls, \u001b[38;5;28mcls\u001b[39m):\n\u001b[1;32m 184\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 185\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPreset has type `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpreset_cls\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` which is not a \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 186\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124ma subclass of calling class `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m`. Call \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 187\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`from_preset` directly on `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpreset_cls\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 188\u001b[0m )\n\u001b[0;32m--> 190\u001b[0m backbone \u001b[38;5;241m=\u001b[39m \u001b[43mload_serialized_object\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpreset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCONFIG_FILE\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 191\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m load_weights:\n\u001b[1;32m 192\u001b[0m jax_memory_cleanup(backbone)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras_nlp/src/utils/preset_utils.py:569\u001b[0m, in \u001b[0;36mload_serialized_object\u001b[0;34m(preset, config_file, config_overrides)\u001b[0m\n\u001b[1;32m 567\u001b[0m config \u001b[38;5;241m=\u001b[39m load_config(preset, config_file)\n\u001b[1;32m 568\u001b[0m config[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconfig\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mconfig[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconfig\u001b[39m\u001b[38;5;124m\"\u001b[39m], \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mconfig_overrides}\n\u001b[0;32m--> 569\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mkeras\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msaving\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdeserialize_keras_object\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras/src/saving/serialization_lib.py:718\u001b[0m, in \u001b[0;36mdeserialize_keras_object\u001b[0;34m(config, custom_objects, safe_mode, **kwargs)\u001b[0m\n\u001b[1;32m 716\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m custom_obj_scope, safe_mode_scope:\n\u001b[1;32m 717\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 718\u001b[0m instance \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_config\u001b[49m\u001b[43m(\u001b[49m\u001b[43minner_config\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 719\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 720\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[1;32m 721\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m could not be deserialized properly. Please\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 722\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m ensure that components that are Python object\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mconfig=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconfig\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mException encountered: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00me\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 727\u001b[0m )\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras_nlp/src/models/backbone.py:119\u001b[0m, in \u001b[0;36mBackbone.from_config\u001b[0;34m(cls, config)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_config\u001b[39m(\u001b[38;5;28mcls\u001b[39m, config):\n\u001b[1;32m 117\u001b[0m \u001b[38;5;66;03m# The default `from_config()` for functional models will return a\u001b[39;00m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;66;03m# vanilla `keras.Model`. We override it to get a subclass instance back.\u001b[39;00m\n\u001b[0;32m--> 119\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras_nlp/src/models/gemma/gemma_backbone.py:171\u001b[0m, in \u001b[0;36mGemmaBackbone.__init__\u001b[0;34m(self, vocabulary_size, num_layers, num_query_heads, num_key_value_heads, hidden_dim, intermediate_dim, head_dim, query_head_dim_normalize, use_post_ffw_norm, use_post_attention_norm, attention_logit_soft_cap, final_logit_soft_cap, use_sliding_window_attention, sliding_window_size, layer_norm_epsilon, dropout, dtype, **kwargs)\u001b[0m\n\u001b[1;32m 165\u001b[0m token_id_input \u001b[38;5;241m=\u001b[39m keras\u001b[38;5;241m.\u001b[39mInput(\n\u001b[1;32m 166\u001b[0m shape\u001b[38;5;241m=\u001b[39m(\u001b[38;5;28;01mNone\u001b[39;00m,), dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfloat32\u001b[39m\u001b[38;5;124m\"\u001b[39m, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtoken_ids\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 167\u001b[0m )\n\u001b[1;32m 168\u001b[0m padding_mask_input \u001b[38;5;241m=\u001b[39m keras\u001b[38;5;241m.\u001b[39mInput(\n\u001b[1;32m 169\u001b[0m shape\u001b[38;5;241m=\u001b[39m(\u001b[38;5;28;01mNone\u001b[39;00m,), dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfloat32\u001b[39m\u001b[38;5;124m\"\u001b[39m, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpadding_mask\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 170\u001b[0m )\n\u001b[0;32m--> 171\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtoken_embedding\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtoken_id_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 172\u001b[0m x \u001b[38;5;241m=\u001b[39m x \u001b[38;5;241m*\u001b[39m ops\u001b[38;5;241m.\u001b[39mcast(ops\u001b[38;5;241m.\u001b[39msqrt(hidden_dim), x\u001b[38;5;241m.\u001b[39mdtype)\n\u001b[1;32m 173\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m transformer_layer \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransformer_layers:\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py:122\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m 120\u001b[0m \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[1;32m 121\u001b[0m \u001b[38;5;66;03m# `keras.config.disable_traceback_filtering()`\u001b[39;00m\n\u001b[0;32m--> 122\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/keras_nlp/src/layers/modeling/reversible_embedding.py:115\u001b[0m, in \u001b[0;36mReversibleEmbedding.build\u001b[0;34m(self, inputs_shape)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mbuild\u001b[39m(\u001b[38;5;28mself\u001b[39m, inputs_shape\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m--> 115\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuild\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs_shape\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtie_weights:\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreverse_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39madd_weight(\n\u001b[1;32m 119\u001b[0m name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreverse_embeddings\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 120\u001b[0m shape\u001b[38;5;241m=\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_dim, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_dim),\n\u001b[1;32m 121\u001b[0m initializer\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membeddings_initializer,\n\u001b[1;32m 122\u001b[0m dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype,\n\u001b[1;32m 123\u001b[0m )\n",
"\u001b[0;31mResourceExhaustedError\u001b[0m: {{function_node __wrapped__StatelessRandomNormalV2_device_/job:localhost/replica:0/task:0/device:GPU:0}} OOM when allocating tensor with shape[256000,2048] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [Op:StatelessRandomNormalV2]"
]
}
],
"source": [
"# Set Kaggle API credentials\n",
"import os\n",
"os.environ[\"KAGGLE_USERNAME\"] = \"rogerkorantenng\"\n",
"os.environ[\"KAGGLE_KEY\"] = \"9a33b6e88bcb6058b1281d777fa6808d\"\n",
"import keras_nlp\n",
"gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset(\"gemma_2b_en\")\n",
"gemma_lm.generate(\"Keras is a\", max_length=30)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5488db1-48b2-4d0c-a4cd-1329a333b3f9",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|