Spaces:
Build error
Build error
File size: 9,196 Bytes
3506b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import gradio as gr
import pandas as pd
import numpy as np
import chromadb
from chromadb.config import Settings
from io import StringIO
from sentence_transformers import SentenceTransformer
import plotly.express as px
from sklearn.manifold import TSNE
# Constants for Model Configuration
MODEL_CONFIG = {
"gpt-4": {
"endpoint": "https://roger-m38jr9pd-eastus2.openai.azure.com/openai/deployments/gpt-4/chat/completions?api-version=2024-08-01-preview",
"api_key": os.getenv("GPT4_API_KEY")
},
"gpt-4o": {
"endpoint": "https://roger-m38jr9pd-eastus2.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview",
"api_key": os.getenv("GPT4O_API_KEY")
},
"gpt-35-turbo": {
"endpoint": "https://rogerkoranteng.openai.azure.com/openai/deployments/gpt-35-turbo/chat/completions?api-version=2024-08-01-preview",
"api_key": os.getenv("GPT35_TURBO_API_KEY")
},
"gpt-4-32k": {
"endpoint": "https://roger-m38orjxq-australiaeast.openai.azure.com/openai/deployments/gpt-4-32k/chat/completions?api-version=2024-08-01-preview",
"api_key": os.getenv("GPT4_32K_API_KEY")
}
}
# Initialize Chroma client with DuckDB and Parquet for persistence
chroma_client = chromadb.Client()
# Functions for Data Processing and Embedding
def process_csv_text(temp_file):
"""Process the uploaded CSV and return the dataframe and column options."""
if isinstance(temp_file, str):
df = pd.read_csv(StringIO(temp_file))
else:
df = pd.read_csv(temp_file.name, header='infer', sep=',')
return df, gr.Dropdown.update(choices=list(df.columns))
def insert_or_update_chroma(col, table, model_name, similarity_metric):
"""Insert or update embeddings in ChromaDB."""
try:
collection = chroma_client.create_collection(
name="my_collection",
embedding_function=SentenceTransformer(model_name),
metadata={"hnsw:space": similarity_metric}
)
except Exception:
print("Collection exists, deleting it")
chroma_client.delete_collection(name='my_collection')
collection = chroma_client.create_collection(
name="my_collection",
embedding_function=SentenceTransformer(model_name),
metadata={"hnsw:space": similarity_metric}
)
if collection:
try:
collection.add(
documents=list(table[col]),
metadatas=[{"source": i} for i in range(len(table))],
ids=[str(i + 1) for i in range(len(table))]
)
return "Embedding calculations and insertions successful"
except Exception as e:
return f"Error in embedding calculations: {e}"
def show_fig():
"""Show t-SNE 2D plot for embeddings."""
collection = chroma_client.get_collection(name="my_collection")
embeddings = collection.get(include=['embeddings', 'documents'])
df = pd.DataFrame({
'text': embeddings['documents'],
'embedding': embeddings['embeddings']
})
embeddings_np = np.array(df['embedding'].tolist())
tsne = TSNE(n_components=2, random_state=42)
transformed = tsne.fit_transform(embeddings_np)
df['tsne_x'] = transformed[:, 0]
df['tsne_y'] = transformed[:, 1]
fig = px.scatter(df, x='tsne_x', y='tsne_y', hover_name='text')
return fig, transformed
def show_test_string_fig(test_string, tsne, model_name, similarity_metric):
"""Show t-SNE plot with test string to compare embeddings."""
collection = chroma_client.get_collection(name="my_collection",
embedding_function=SentenceTransformer(model_name))
collection.add(
documents=[test_string],
metadatas=[{"source": 'test'}],
ids=['test_sample']
)
embeddings = collection.get(include=['embeddings', 'documents'])
df = pd.DataFrame({
'text': embeddings['documents'],
'embedding': embeddings['embeddings'],
'set': ['orig' if document != test_string else 'test_string' for document in embeddings["documents"]]
})
embeddings_np = np.array(df['embedding'].tolist())
transformed = tsne.transform(embeddings_np)
df['tsne_x'] = transformed[:, 0]
df['tsne_y'] = transformed[:, 1]
fig = px.scatter(df, x='tsne_x', y='tsne_y', hover_name='text', color='set')
return fig, tsne
def ask_gpt(message, messages_history, embedding_model, system_prompt, temperature, max_tokens, chatgpt_model):
"""Interacts with the OpenAI API using Azure endpoint."""
if len(messages_history) < 1:
messages_history = [{"role": "system", "content": system_prompt}]
model_info = MODEL_CONFIG[chatgpt_model]
headers = {"Content-Type": "application/json", "api-key": model_info["api_key"]}
message = retrieve_similar(message, embedding_model)
messages_history += [{"role": "user", "content": message}]
response = openai.ChatCompletion.create(
model=chatgpt_model,
messages=messages_history,
temperature=temperature,
max_tokens=max_tokens
)
return response['choices'][0]['message']['content'], messages_history
def retrieve_similar(prompt, embedding_model):
"""Retrieve similar documents from ChromaDB to enhance context."""
# Initialize SentenceTransformer correctly
embedding_function = SentenceTransformer(embedding_model)
collection = chroma_client.get_collection(
name="my_collection",
embedding_function=embedding_function
)
results = collection.query(query_texts=prompt, n_results=10)
additional_context = ''
for i, document in enumerate(results['documents'][0]):
additional_context += f'{i + 1}. {document}\n'
return additional_context + f'Question: {prompt}'
# Gradio Interface Setup
def build_gradio_ui():
"""Setup the complete Gradio UI."""
with gr.Blocks() as demo:
# Tab 1: Upload CSV and Display Data
with gr.Tab("Upload data"):
upload_button = gr.File(label="Upload CSV", file_types=['.csv'], file_count="single")
table = gr.Dataframe(type="pandas", interactive=True)
cols = gr.Dropdown(choices=[], label='Dataframe columns')
upload_button.change(fn=process_csv_text, inputs=upload_button, outputs=[table, cols])
# Tab 2: ChromaDB, Embeddings, and Plotting
with gr.Tab("ChromaDB and Embeddings"):
cols = gr.Dropdown(choices=[], label='Dataframe columns')
embedding_model = gr.Dropdown(value='all-MiniLM-L6-v2',
choices=['all-MiniLM-L6-v2', 'intfloat/e5-small-v2', 'intfloat/e5-base-v2',
'intfloat/e5-large-v2', 'paraphrase-multilingual-MiniLM-L12-v2'],
label='Embedding Model')
similarity_metric = gr.Dropdown(value='cosine', choices=['cosine', 'l2'], label='Similarity Metric')
embedding_button = gr.Button(value="Insert or Update Embeddings")
text = gr.Textbox(label='Process Status')
show_embeddings_button = gr.Button(value="Show Embeddings")
embeddings_plot = gr.Plot()
tsne = gr.State(value=None) # Using gr.State for intermediate results (tsne)
test_string = gr.Textbox(label='Test String')
calculate_2d_repr_button = gr.Button(value="Calculate 2D Representation")
embeddings_plot_with_text_string = gr.Plot()
embedding_button.click(insert_or_update_chroma, inputs=[cols, table, embedding_model, similarity_metric], outputs=[text])
show_embeddings_button.click(show_fig, inputs=[], outputs=[embeddings_plot, tsne])
calculate_2d_repr_button.click(show_test_string_fig, inputs=[test_string, tsne, embedding_model, similarity_metric], outputs=[embeddings_plot_with_text_string, tsne])
# Tab 3: Chat with GPT
with gr.Tab("Chat"):
system_prompt = gr.Textbox(value="You are a helpful assistant.", label="System Message")
chatgpt_model = gr.Dropdown(value="gpt-4", choices=list(MODEL_CONFIG.keys()), label="ChatGPT Model")
temperature = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.7, label="Temperature")
max_tokens = gr.Slider(minimum=50, maximum=2000, step=50, value=300, label="Max Tokens")
chatbot = gr.Chatbot(label="ChatGPT Chat")
clear_button = gr.Button("Clear Chat History")
msg = gr.Textbox()
msg_log = gr.Textbox("Message history", label="History")
# Replacing `.submit()` with `.change()` to trigger callback when user enters a message
msg.submit(fn=ask_gpt, inputs=[msg, chatbot, system_prompt, embedding_model, temperature, max_tokens, chatgpt_model], outputs=[msg, chatbot])
clear_button.click(fn=lambda: None, inputs=None, outputs=[chatbot])
return demo
# Launch the Gradio interface
demo = build_gradio_ui()
demo.launch(server_name="0.0.0.0", server_port=8080, share=True)
# Launch the Gradio interf
|