File size: 10,178 Bytes
3506b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a6b7c9f9-db9d-4278-8e0c-192db80afb9b",
   "metadata": {},
   "source": [
    "### Importing Libraries\n",
    "\n",
    "This cell imports the necessary libraries for the project. `keras` is a high-level neural networks API, and `keras_nlp` provides additional tools and functionalities for natural language processing tasks using Keras.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "09958eb5-8363-47dd-b508-353d6e538827",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-08-29 18:01:15.929029: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2024-08-29 18:01:15.944717: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "2024-08-29 18:01:15.963838: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "2024-08-29 18:01:15.969620: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
      "2024-08-29 18:01:15.983677: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "/usr/local/lib/python3.10/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import keras\n",
    "import keras_nlp\n",
    "import tensorflow"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "de2731f6-422e-46bf-839d-ef8f474e7742",
   "metadata": {},
   "outputs": [],
   "source": [
    "# import os\n",
    "\n",
    "# os.environ[\"KERAS_BACKEND\"] = \"jax\"  \n",
    "# # Avoid memory fragmentation on JAX backend.\n",
    "# os.environ[\"XLA_PYTHON_CLIENT_MEM_FRACTION\"]=\"1.00\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8725e8ba-f1c3-4e5f-8bb8-1451e3a7a394",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "# Initialize an empty list to hold the processed data.\n",
    "data = []\n",
    "\n",
    "# Open and read the JSON file line by line.\n",
    "with open('/project/data/combined_dataset.json') as file:\n",
    "    for line in file:\n",
    "        features = json.loads(line)\n",
    "        \n",
    "        # Filter out examples without \"Context\".\n",
    "        if not features.get(\"Context\"):\n",
    "            continue\n",
    "        \n",
    "        # Format the example as a string.\n",
    "        template = \"Instruction:\\n{Context}\\n\\nResponse:\\n{Response}\"\n",
    "        formatted_example = template.format(**features)\n",
    "        \n",
    "        # Append the formatted example to the data list.\n",
    "        data.append(formatted_example)\n",
    "\n",
    "# Now data contains a list of formatted strings.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a26993cb-c8aa-42b1-943f-b6033d909336",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "# Set Kaggle API credentials\n",
    "os.environ[\"KAGGLE_USERNAME\"] = \"rogerkorantenng\"\n",
    "os.environ[\"KAGGLE_KEY\"] = \"9a33b6e88bcb6058b1281d777fa6808d\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "008c3f60-b0f6-4709-a7c7-836a6ea4f5cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset(\"gemma_2b_en\")\n",
    "gemma_lm.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8fcd0823-61b8-4037-863d-d81dfcd8dec1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the template with placeholders for 'instruction' and 'response'\n",
    "template = \"Instruction:\\n{instruction}\\n\\nResponse:\\n{response}\"\n",
    "\n",
    "# Create the prompt by formatting the template with actual data\n",
    "prompt = template.format(\n",
    "    instruction=\"I'm going through some things with my feelings and myself. I barely sleep and I do nothing but think about how I'm worthless and how I shouldn't be here.\\n   I've never tried or contemplated suicide. I've always wanted to fix my issues, but I never get around to it.\\n   How can I change my feeling of being worthless to everyone?\",\n",
    "    response=\"\",\n",
    ")\n",
    "\n",
    "# Assuming gemma_lm is a language model that you're using to generate text\n",
    "print(gemma_lm.generate(prompt, max_length=256))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "834bffa8-4361-4ec9-8c3a-7403d3ce83c4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# gemma_lm.save(\"gemma_model.h5\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3af9301d-2623-4773-9f3b-07efcc788fc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Enable LoRA for the model and set the LoRA rank to 4.\n",
    "gemma_lm.backbone.enable_lora(rank=10)\n",
    "gemma_lm.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab365ee3-da5f-4b5c-b00b-428005ff42e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import tensorflow as tf\n",
    "import keras_nlp\n",
    "import keras\n",
    "import json\n",
    "\n",
    "# Set Kaggle API credentials\n",
    "os.environ[\"KAGGLE_USERNAME\"] = \"rogerkorantenng\"\n",
    "os.environ[\"KAGGLE_KEY\"] = \"9a33b6e88bcb6058b1281d777fa6808d\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ae2db527-0964-491d-8fd6-0c746cbcae2e",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_compiled_model():\n",
    "    gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset(\"gemma_2b_en\")\n",
    "    gemma_lm.summary()\n",
    "\n",
    "    gemma_lm.backbone.enable_lora(rank=2)\n",
    "    gemma_lm.summary()\n",
    "    \n",
    "    # Set the sequence length to 128 before using the model.\n",
    "    gemma_lm.preprocessor.sequence_length = 128\n",
    "    \n",
    "    # Use AdamW (a common optimizer for transformer models).\n",
    "    optimizer = keras.optimizers.AdamW(\n",
    "        learning_rate=5e-5,\n",
    "        weight_decay=0.01,\n",
    "    )\n",
    "    \n",
    "    # Exclude layernorm and bias terms from decay.\n",
    "    optimizer.exclude_from_weight_decay(var_names=[\"bias\", \"scale\"])\n",
    "    \n",
    "    gemma_lm.compile(\n",
    "        loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
    "        optimizer=optimizer,\n",
    "        weighted_metrics=[keras.metrics.SparseCategoricalAccuracy()],\n",
    "    )\n",
    "\n",
    "    \n",
    "    return gemma_lm\n",
    "print(gemma_lm.)\n",
    "\n",
    "print(gemma_lm.summary())\n",
    "\n",
    "\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd11ce52-9eb8-4e48-a4da-fdc759e7f789",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_dataset():\n",
    "    # Initialize an empty list to hold the processed data.\n",
    "    data = []\n",
    "    \n",
    "    # Open and read the JSON file line by line.\n",
    "    with open('/project/data/HealthCareMagic-100k-en.jsonl') as file:\n",
    "        for line in file:\n",
    "            features = json.loads(line)\n",
    "            \n",
    "            # Filter out examples without \"Context\".\n",
    "            if not features.get(\"Context\"):\n",
    "                continue\n",
    "            \n",
    "            # Format the example as a string.\n",
    "            template = \"Instruction:\\n{Context}\\n\\nResponse:\\n{Response}\"\n",
    "            formatted_example = template.format(**features)\n",
    "            \n",
    "            # Append the formatted example to the data list.\n",
    "            data.append(formatted_example)\n",
    "    \n",
    "    return data "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ec94c5f-70b6-4683-95d4-53c1231f5a9c",
   "metadata": {},
   "outputs": [],
   "source": [
    "model = get_compiled_model()\n",
    "\n",
    "# Get the dataset outside the strategy scope.\n",
    "data = get_dataset()\n",
    "\n",
    "# Fit the model using the data.\n",
    "model.fit(data, epochs=2, batch_size=0, verbose=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "bfe053b2-a02f-4e2b-af04-48c28a00c20e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hello\n"
     ]
    }
   ],
   "source": [
    "print('Hello')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "35d93608-b1ef-44a1-a57b-4c1a3d3dbebb",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}