File size: 13,907 Bytes
3506b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import gradio as gr
import os
import json
from dotenv import load_dotenv
import requests
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import login
from datetime import datetime
import numpy as np
import torch
from gtts import gTTS
import tempfile
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import torch

# Load environment variables from .env file
load_dotenv()
token = os.getenv("HF_TOKEN")

# Use the token in the login function
login(token=token)
# File paths for storing model configurations and chat history
MODEL_CONFIG_FILE = "model_config.json"
CHAT_HISTORY_FILE = "chat_history.json"

# Load model configurations from a JSON file (if exists)
def load_model_config():
    if os.path.exists(MODEL_CONFIG_FILE):
        with open(MODEL_CONFIG_FILE, 'r') as f:
            return json.load(f)
    return {
        "gpt-4": {
            "endpoint": "https://roger-m38jr9pd-eastus2.openai.azure.com/openai/deployments/gpt-4/chat/completions?api-version=2024-08-01-preview",
            "api_key": os.getenv("GPT4_API_KEY"),
            "model_path": None  # No model path for API models
        },
        "gpt-4o": {
            "endpoint": "https://roger-m38jr9pd-eastus2.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview",
            "api_key": os.getenv("GPT4O_API_KEY"),
            "model_path": None
        },
        "gpt-35-turbo": {
            "endpoint": "https://rogerkoranteng.openai.azure.com/openai/deployments/gpt-35-turbo/chat/completions?api-version=2024-08-01-preview",
            "api_key": os.getenv("GPT35_TURBO_API_KEY"),
            "model_path": None
        },
        "gpt-4-32k": {
            "endpoint": "https://roger-m38orjxq-australiaeast.openai.azure.com/openai/deployments/gpt-4-32k/chat/completions?api-version=2024-08-01-preview",
            "api_key": os.getenv("GPT4_32K_API_KEY"),
            "model_path": None
        }
    }

predefined_messages = {
    "feeling_sad": "Hello, I am feeling sad today, what should I do?",
    "Nobody likes me": "Hello, Sage. I feel like nobody likes me. What should I do?",
    'Boyfriend broke up': "Hi Sage, my boyfriend broke up with me. I'm feeling so sad. What should I do?",
    'I am lonely': "Hi Sage, I am feeling lonely. What should I do?",
    'I am stressed': "Hi Sage, I am feeling stressed. What should I do?",
    'I am anxious': "Hi Sage, I am feeling anxious. What should I do?",
}

# Save model configuration to JSON
def save_model_config():
    with open(MODEL_CONFIG_FILE, 'w') as f:
        json.dump(model_config, f, indent=4)

# Load chat history from a JSON file
def load_chat_history():
    if os.path.exists(CHAT_HISTORY_FILE):
        with open(CHAT_HISTORY_FILE, 'r') as f:
            return json.load(f)
    return []

# Save chat history to a JSON file
def save_chat_history(chat_history):
    with open(CHAT_HISTORY_FILE, 'w') as f:
        json.dump(chat_history, f, indent=4)

# Define model configurations
model_config = load_model_config()

# Function to dynamically add downloaded model to model_config
def add_downloaded_model(model_name, model_path):
    model_config[model_name] = {
        "endpoint": None,
        "model_path": model_path,
        "api_key": None
    }
    save_model_config()
    return list(model_config.keys())

# Function to download model from Hugging Face synchronously
def download_model(model_name):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name)
        model_path = f"./models/{model_name}"
        os.makedirs(model_path, exist_ok=True)
        model.save_pretrained(model_path)
        tokenizer.save_pretrained(model_path)
        updated_models = add_downloaded_model(model_name, model_path)
        return f"Model '{model_name}' downloaded and added.", updated_models
    except Exception as e:
        return f"Error downloading model '{model_name}': {e}", list(model_config.keys())

# Chat function using the selected model
def generate_response(model_choice, user_message, chat_history):
    model_info = model_config.get(model_choice)
    if not model_info:
        return "Invalid model selection. Please choose a valid model.", chat_history

    chat_history.append({"role": "user", "content": user_message})
    headers = {"Content-Type": "application/json"}

    # Check if the model is an API model (it will have an endpoint)
    if model_info["endpoint"]:
        if model_info["api_key"]:
            headers["api-key"] = model_info["api_key"]

        data = {"messages": chat_history, "max_tokens": 1500, "temperature": 0.7}

        try:
            # Send request to the API model endpoint
            response = requests.post(model_info["endpoint"], headers=headers, json=data)
            response.raise_for_status()
            assistant_message = response.json()['choices'][0]['message']['content']
            chat_history.append({"role": "assistant", "content": assistant_message})
            save_chat_history(chat_history)  # Save chat history to JSON
        except requests.exceptions.RequestException as e:
            assistant_message = f"Error: {e}"
            chat_history.append({"role": "assistant", "content": assistant_message})
            save_chat_history(chat_history)
    else:
        # If it's a local model, load the model and tokenizer from the local path
        model_path = model_info["model_path"]
        try:
            tokenizer = AutoTokenizer.from_pretrained(model_path)
            model = AutoModelForCausalLM.from_pretrained(model_path)

            inputs = tokenizer(user_message, return_tensors="pt")
            outputs = model.generate(inputs['input_ids'], max_length=500, num_return_sequences=1)
            assistant_message = tokenizer.decode(outputs[0], skip_special_tokens=True)

            chat_history.append({"role": "assistant", "content": assistant_message})
            save_chat_history(chat_history)
        except Exception as e:
            assistant_message = f"Error loading model locally: {e}"
            chat_history.append({"role": "assistant", "content": assistant_message})
            save_chat_history(chat_history)

    # Convert the assistant message to audio
    tts = gTTS(assistant_message)
    audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
    tts.save(audio_file.name)

    return chat_history, audio_file.name

# Function to format chat history with custom bubble styles
def format_chat_bubble(history):
    formatted_history = ""
    for message in history:
        timestamp = datetime.now().strftime("%H:%M:%S")
        if message["role"] == "user":
            formatted_history += f'''
                <div class="user-bubble">
                    <strong>Me:</strong> {message["content"]}
                </div>
            '''
        else:
            formatted_history += f'''
                <div class="assistant-bubble">
                    <strong>Sage:</strong> {message["content"]}
                </div>
            '''
    return formatted_history

tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")

def transcribe(audio):
    if audio is None:
        return "No audio input received."

    sr, y = audio

    # Convert to mono if stereo
    if y.ndim > 1:
        y = y.mean(axis=1)

    y = y.astype(np.float32)
    y /= np.max(np.abs(y))

    # Tokenize the audio
    input_values = tokenizer(y, return_tensors="pt", sampling_rate=sr).input_values

    # Perform inference
    with torch.no_grad():
        logits = model(input_values).logits

    # Decode the logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = tokenizer.decode(predicted_ids[0])

    return transcription

# Create the Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("## Chat with Sage - Your Mental Health Advisor")

    with gr.Tab("Model Management"):
        with gr.Tabs():
            with gr.TabItem("Model Selection"):
                gr.Markdown("### Select Model for Chat")
                model_dropdown = gr.Dropdown(choices=list(model_config.keys()), label="Choose a Model", value="gpt-4",
                                             allow_custom_value=True)
                status_textbox = gr.Textbox(label="Model Selection Status", value="Selected model: gpt-4")
                model_dropdown.change(lambda model: f"Selected model: {model}", inputs=model_dropdown,
                                      outputs=status_textbox)

            with gr.TabItem("Download Model"):  # Sub-tab for downloading models
                gr.Markdown("### Download a Model from Hugging Face")
                model_name_input = gr.Textbox(label="Enter Model Name from Hugging Face (e.g., gpt2)")
                download_button = gr.Button("Download Model")
                download_status = gr.Textbox(label="Download Status")

                # Model download synchronous handler
                def on_model_download(model_name):
                    download_message, updated_models = download_model(model_name)
                    # Trigger the dropdown update to show the newly added model
                    return download_message, gr.update(choices=updated_models, value=updated_models[-1])

                download_button.click(on_model_download, inputs=model_name_input,
                                      outputs=[download_status, model_dropdown])

                refresh_button = gr.Button("Refresh Model List")
                refresh_button.click(lambda: gr.update(choices=list(model_config.keys())), inputs=[],
                                     outputs=model_dropdown)

    with gr.Tab("Chat Interface"):
        gr.Markdown("### Chat with Sage")

        # Chat history state for tracking conversation
        chat_history_state = gr.State(load_chat_history())  # Load existing chat history

        # Add initial introduction message
        if not chat_history_state.value:
            chat_history_state.value.append({"role": "assistant", "content": "Hello, I am Sage. How can I assist you today?"})

        chat_display = gr.HTML(label="Chat", value=format_chat_bubble(chat_history_state.value), elem_id="chat-display")

        user_message = gr.Textbox(placeholder="Type your message here...", label="Your Message")
        send_button = gr.Button("Send Message")

        # Predefined message buttons
        predefined_buttons = [gr.Button(value=msg) for msg in predefined_messages.values()]

        # Real-time message updating
        def update_chat(model_choice, user_message, chat_history_state):
            chat_history, audio_file = generate_response(model_choice, user_message, chat_history_state)
            formatted_chat = format_chat_bubble(chat_history)
            return formatted_chat, chat_history, audio_file

        send_button.click(
            update_chat,
            inputs=[model_dropdown, user_message, chat_history_state],
            outputs=[chat_display, chat_history_state, gr.Audio(autoplay=True)]
        )

        send_button.click(lambda: "", None, user_message)  # Clears the user input after sending

        # Add click events for predefined message buttons
        for button, message in zip(predefined_buttons, predefined_messages.values()):
            button.click(
                update_chat,
                inputs=[model_dropdown, gr.State(message), chat_history_state],
                outputs=[chat_display, chat_history_state, gr.Audio(autoplay=True)]
            )

    with gr.Tab("Speech Interface"):
        gr.Markdown("### Speak with Sage")

        audio_input = gr.Audio(type="numpy")
        transcribe_button = gr.Button("Transcribe")
        transcribed_text = gr.Textbox(label="Transcribed Text")

        transcribe_button.click(
            transcribe,
            inputs=audio_input,
            outputs=transcribed_text
        )

        send_speech_button = gr.Button("Send Speech Message")

        send_speech_button.click(
            update_chat,
            inputs=[model_dropdown, transcribed_text, chat_history_state],
            outputs=[chat_display, chat_history_state, gr.Audio(autoplay=True)]
        )

    # Add custom CSS for scrolling chat box and bubbles
    interface.css = """
        #chat-display {
            max-height: 500px;
            overflow-y: auto;
            padding: 10px;
            background-color: #1a1a1a;
            border-radius: 10px;
            display: flex;
            flex-direction: column;
            justify-content: flex-start;
            box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
            scroll-behavior: smooth;
        }

        /* User message style - text only */
        .user-bubble {
            color: #ffffff;  /* Text color for the user */
            padding: 8px 15px;
            margin: 8px 0;
            word-wrap: break-word;
            align-self: flex-end;
            font-size: 14px;
            position: relative;
            max-width: 70%;  /* Make the bubble width dynamic */
            border-radius: 15px;
            background-color: #121212;  /* Light cyan background for the user */
            transition: color 0.3s ease;
        }

        /* Assistant message style - text only */
        .assistant-bubble {
            color: #ffffff;  /* Text color for the assistant */
            padding: 8px 15px;
            margin: 8px 0;
            word-wrap: break-word;
            align-self: flex-start;
            background-color: #2a2a2a;
            font-size: 14px;
            position: relative;
            max-width: 70%;
            transition: color 0.3s ease;
        }

    """

# Launch the Gradio interface
interface.launch(server_name="0.0.0.0", server_port=8080, share=True)