Spaces:
Build error
Build error
import gradio as grimport os | |
import keras | |
import keras_nlp | |
import os | |
os.environ["KERAS_BACKEND"] = "jax" | |
# Avoid memory fragmentation on JAX backend. | |
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00" | |
import os | |
# Set Kaggle API credentials | |
os.environ["KAGGLE_USERNAME"] = "rogerkorantenng" | |
os.environ["KAGGLE_KEY"] = "9a33b6e88bcb6058b1281d777fa6808d" | |
# Load environment variables | |
load_dotenv() | |
# Replace this with the path or method to load your local model | |
gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("gemma_2b_en") | |
def generate_response(message, history): | |
# Format the conversation history for the local model | |
formatted_history = [] | |
for user, assistant in history: | |
formatted_history.append(f"Instruction:\n{user}\n\nResponse:\n{assistant}") | |
# Add the latest user message to the history | |
formatted_history.append(f"Instruction:\n{message}\n\nResponse:\n") | |
# Join formatted history into a single string for input | |
input_text = "\n".join(formatted_history) | |
# Generate response from the local model | |
# Make sure to adjust this part according to your model's API | |
response = gemma_lm.generate(input_text, max_length=256) | |
# Extract the response text | |
# Adjust the response extraction based on the actual structure of your model's output | |
return response[0] # Change this line if necessary | |
# Create the Gradio interface | |
gr.ChatInterface( | |
generate_response, | |
chatbot=gr.Chatbot(height=300), | |
textbox=gr.Textbox(placeholder="You can ask me anything", container=False, scale=7), | |
title="Local Model Chat Bot", | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear" | |
).launch(share=True) | |