Mental-Sage / chatbot /main.py.save
rogerkoranteng's picture
Upload folder using huggingface_hub
3506b46 verified
import gradio as grimport os
import keras
import keras_nlp
import os
os.environ["KERAS_BACKEND"] = "jax"
# Avoid memory fragmentation on JAX backend.
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00"
import os
# Set Kaggle API credentials
os.environ["KAGGLE_USERNAME"] = "rogerkorantenng"
os.environ["KAGGLE_KEY"] = "9a33b6e88bcb6058b1281d777fa6808d"
# Load environment variables
load_dotenv()
# Replace this with the path or method to load your local model
gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("gemma_2b_en")
def generate_response(message, history):
# Format the conversation history for the local model
formatted_history = []
for user, assistant in history:
formatted_history.append(f"Instruction:\n{user}\n\nResponse:\n{assistant}")
# Add the latest user message to the history
formatted_history.append(f"Instruction:\n{message}\n\nResponse:\n")
# Join formatted history into a single string for input
input_text = "\n".join(formatted_history)
# Generate response from the local model
# Make sure to adjust this part according to your model's API
response = gemma_lm.generate(input_text, max_length=256)
# Extract the response text
# Adjust the response extraction based on the actual structure of your model's output
return response[0] # Change this line if necessary
# Create the Gradio interface
gr.ChatInterface(
generate_response,
chatbot=gr.Chatbot(height=300),
textbox=gr.Textbox(placeholder="You can ask me anything", container=False, scale=7),
title="Local Model Chat Bot",
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear"
).launch(share=True)