Spaces:
Build error
Build error
import gradio as gr | |
import os | |
import keras_nlp | |
from transformers import AutoModelForCausalLM | |
# Set Kaggle API credentials using values from environment variables | |
os.environ["KAGGLE_USERNAME"] = os.environ.get("KAGGLE_USERNAME") | |
os.environ["KAGGLE_KEY"] = os.environ.get("KAGGLE_KEY") | |
# Load LoRA weights if you have them | |
LoRA_weights_path = "fined-tuned-model.lora.h5" | |
gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("gemma_2b_en") | |
gemma_lm.backbone.enable_lora(rank=4) # Enable LoRA with rank 4 | |
gemma_lm.preprocessor.sequence_length = 512 # Limit sequence length | |
gemma_lm.backbone.load_lora_weights(LoRA_weights_path) # Load LoRA weights | |
# Define the response generation function | |
def generate_response(message): | |
# Create a prompt template | |
template = "Instruction:\n{instruction}\n\nResponse:\n{response}" | |
# Create the prompt with the current message | |
prompt = template.format(instruction=message, response="") | |
print("Prompt:\n", prompt) | |
# Generate response from the model | |
response = gemma_lm.generate(prompt, max_length=256) | |
# Only keep the generated response | |
response = response.split("Response:")[-1].strip() | |
print("Generated Response:\n", response) | |
# Extract and return the generated response text | |
return response # Adjust this if your model's output structure differs | |
# Create the Gradio chat interface | |
interface = gr.Interface( | |
fn=generate_response, # Function that generates responses | |
inputs=gr.Textbox(placeholder="Hello, I am Sage, your mental health advisor", lines=2, scale=7), | |
outputs=gr.Textbox(), | |
title="Sage, your Mental Health Advisor", | |
# description="Chat with Sage, your mental health advisor.", | |
# live=True | |
) | |
proxy_prefix = os.environ.get("PROXY_PREFIX") | |
# Launch the Gradio app | |
interface.launch(server_name="0.0.0.0", server_port=8080, root_path=proxy_prefix, share=True) | |