File size: 7,647 Bytes
89ea09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from pathlib import Path

import pytest
import torch

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import HDStrategy, SDSampler
from lama_cleaner.tests.test_model import get_config, assert_equal

current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)


@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
@pytest.mark.parametrize("cpu_textencoder", [True, False])
@pytest.mark.parametrize("disable_nsfw", [True, False])
def test_runway_sd_1_5_ddim(
    sd_device, strategy, sampler, cpu_textencoder, disable_nsfw
):
    def callback(i, t, latents):
        pass

    if sd_device == "cuda" and not torch.cuda.is_available():
        return

    sd_steps = 50 if sd_device == "cuda" else 1
    model = ModelManager(
        name="sd1.5",
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=True,
        disable_nsfw=disable_nsfw,
        sd_cpu_textencoder=cpu_textencoder,
        callback=callback,
    )
    cfg = get_config(strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps)
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"

    assert_equal(
        model,
        cfg,
        f"runway_sd_{strategy.capitalize()}_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
        fx=1.3,
    )


@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize(
    "sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a]
)
@pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [True])
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
    def callback(i, t, latents):
        print(f"sd_step_{i}")

    if sd_device == "cuda" and not torch.cuda.is_available():
        return

    sd_steps = 50 if sd_device == "cuda" else 1
    model = ModelManager(
        name="sd1.5",
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=True,
        disable_nsfw=disable_nsfw,
        sd_cpu_textencoder=cpu_textencoder,
        callback=callback,
    )
    cfg = get_config(strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps)
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"

    assert_equal(
        model,
        cfg,
        f"runway_sd_{strategy.capitalize()}_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
        fx=1.3,
    )


@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
    def callback(i, t, latents):
        pass

    if sd_device == "cuda" and not torch.cuda.is_available():
        return

    sd_steps = 50 if sd_device == "cuda" else 1
    model = ModelManager(
        name="sd1.5",
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=True,
        disable_nsfw=False,
        sd_cpu_textencoder=False,
        callback=callback,
    )
    cfg = get_config(
        strategy,
        sd_steps=sd_steps,
        prompt="Face of a fox, high resolution, sitting on a park bench",
        negative_prompt="orange, yellow, small",
        sd_sampler=sampler,
        sd_match_histograms=True,
    )

    name = f"{sampler}_negative_prompt"

    assert_equal(
        model,
        cfg,
        f"runway_sd_{strategy.capitalize()}_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
        fx=1,
    )


@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
@pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [False])
def test_runway_sd_1_5_sd_scale(
    sd_device, strategy, sampler, cpu_textencoder, disable_nsfw
):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return

    sd_steps = 50 if sd_device == "cuda" else 1
    model = ModelManager(
        name="sd1.5",
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=True,
        disable_nsfw=disable_nsfw,
        sd_cpu_textencoder=cpu_textencoder,
    )
    cfg = get_config(
        strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps, sd_scale=0.85
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"

    assert_equal(
        model,
        cfg,
        f"runway_sd_{strategy.capitalize()}_{name}_sdscale.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
        fx=1.3,
    )


@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return

    sd_steps = 50 if sd_device == "cuda" else 1
    model = ModelManager(
        name="sd1.5",
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=True,
        disable_nsfw=True,
        sd_cpu_textencoder=False,
        cpu_offload=True,
    )
    cfg = get_config(
        strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps, sd_scale=0.85
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}"

    assert_equal(
        model,
        cfg,
        f"runway_sd_{strategy.capitalize()}_{name}_cpu_offload.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )


@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
def test_local_file_path(sd_device, sampler):
    if sd_device == "cuda" and not torch.cuda.is_available():
        return

    sd_steps = 1 if sd_device == "cpu" else 50
    model = ModelManager(
        name="sd1.5",
        device=torch.device(sd_device),
        hf_access_token="",
        sd_run_local=True,
        disable_nsfw=True,
        sd_cpu_textencoder=False,
        cpu_offload=True,
        sd_local_model_path="/Users/cwq/data/models/sd-v1-5-inpainting.ckpt",
    )
    cfg = get_config(
        HDStrategy.ORIGINAL,
        prompt="a fox sitting on a bench",
        sd_steps=sd_steps,
    )
    cfg.sd_sampler = sampler

    name = f"device_{sd_device}_{sampler}"

    assert_equal(
        model,
        cfg,
        f"sd_local_model_{name}.png",
        img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
        mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
    )