Spaces:
Sleeping
Sleeping
import PIL.Image | |
import cv2 | |
import torch | |
from loguru import logger | |
from lama_cleaner.model.base import DiffusionInpaintModel | |
from lama_cleaner.model.utils import set_seed | |
from lama_cleaner.schema import Config | |
class InstructPix2Pix(DiffusionInpaintModel): | |
name = "instruct_pix2pix" | |
pad_mod = 8 | |
min_size = 512 | |
def init_model(self, device: torch.device, **kwargs): | |
from diffusers import StableDiffusionInstructPix2PixPipeline | |
fp16 = not kwargs.get('no_half', False) | |
model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)} | |
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False): | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update(dict( | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False | |
)) | |
use_gpu = device == torch.device('cuda') and torch.cuda.is_available() | |
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 | |
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
"timbrooks/instruct-pix2pix", | |
revision="fp16" if use_gpu and fp16 else "main", | |
torch_dtype=torch_dtype, | |
**model_kwargs | |
) | |
self.model.enable_attention_slicing() | |
if kwargs.get('enable_xformers', False): | |
self.model.enable_xformers_memory_efficient_attention() | |
if kwargs.get('cpu_offload', False) and use_gpu: | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
def forward(self, image, mask, config: Config): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0] | |
""" | |
output = self.model( | |
image=PIL.Image.fromarray(image), | |
prompt=config.prompt, | |
negative_prompt=config.negative_prompt, | |
num_inference_steps=config.p2p_steps, | |
image_guidance_scale=config.p2p_image_guidance_scale, | |
guidance_scale=config.p2p_guidance_scale, | |
output_type="np.array", | |
generator=torch.manual_seed(config.sd_seed) | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |
# | |
# def forward_post_process(self, result, image, mask, config): | |
# if config.sd_match_histograms: | |
# result = self._match_histograms(result, image[:, :, ::-1], mask) | |
# | |
# if config.sd_mask_blur != 0: | |
# k = 2 * config.sd_mask_blur + 1 | |
# mask = cv2.GaussianBlur(mask, (k, k), 0) | |
# return result, image, mask | |
def is_downloaded() -> bool: | |
# model will be downloaded when app start, and can't switch in frontend settings | |
return True | |