Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
import os | |
import hashlib | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
import imghdr | |
import io | |
import logging | |
import multiprocessing | |
import random | |
import time | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from loguru import logger | |
from lama_cleaner.const import SD15_MODELS | |
from lama_cleaner.file_manager import FileManager | |
from lama_cleaner.model.utils import torch_gc | |
from lama_cleaner.model_manager import ModelManager | |
from lama_cleaner.plugins import ( | |
InteractiveSeg, | |
RemoveBG, | |
RealESRGANUpscaler, | |
MakeGIF, | |
GFPGANPlugin, | |
RestoreFormerPlugin, | |
AnimeSeg, | |
) | |
from lama_cleaner.schema import Config | |
try: | |
torch._C._jit_override_can_fuse_on_cpu(False) | |
torch._C._jit_override_can_fuse_on_gpu(False) | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
torch._C._jit_set_nvfuser_enabled(False) | |
except: | |
pass | |
from flask import ( | |
Flask, | |
request, | |
send_file, | |
cli, | |
make_response, | |
send_from_directory, | |
jsonify, | |
) | |
from flask_socketio import SocketIO | |
# Disable ability for Flask to display warning about using a development server in a production environment. | |
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356 | |
cli.show_server_banner = lambda *_: None | |
from flask_cors import CORS | |
from lama_cleaner.helper import ( | |
load_img, | |
numpy_to_bytes, | |
resize_max_size, | |
pil_to_bytes, | |
) | |
NUM_THREADS = str(multiprocessing.cpu_count()) | |
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56 | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "True" | |
os.environ["OMP_NUM_THREADS"] = NUM_THREADS | |
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS | |
os.environ["MKL_NUM_THREADS"] = NUM_THREADS | |
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS | |
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS | |
if os.environ.get("CACHE_DIR"): | |
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] | |
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build") | |
class NoFlaskwebgui(logging.Filter): | |
def filter(self, record): | |
msg = record.getMessage() | |
if "Running on http:" in msg: | |
print(msg[msg.index("Running on http:") :]) | |
return ( | |
"flaskwebgui-keep-server-alive" not in msg | |
and "socket.io" not in msg | |
and "This is a development server." not in msg | |
) | |
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui()) | |
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static")) | |
app.config["JSON_AS_ASCII"] = False | |
CORS(app, expose_headers=["Content-Disposition"]) | |
sio_logger = logging.getLogger("sio-logger") | |
sio_logger.setLevel(logging.ERROR) | |
socketio = SocketIO(app, cors_allowed_origins="*", async_mode="threading") | |
model: ModelManager = None | |
thumb: FileManager = None | |
output_dir: str = None | |
device = None | |
input_image_path: str = None | |
is_disable_model_switch: bool = False | |
is_controlnet: bool = False | |
controlnet_method: str = "control_v11p_sd15_canny" | |
is_enable_file_manager: bool = False | |
is_enable_auto_saving: bool = False | |
is_desktop: bool = False | |
image_quality: int = 95 | |
plugins = {} | |
def get_image_ext(img_bytes): | |
w = imghdr.what("", img_bytes) | |
if w is None: | |
w = "jpeg" | |
return w | |
def diffuser_callback(i, t, latents): | |
socketio.emit("diffusion_progress", {"step": i}) | |
def save_image(): | |
if output_dir is None: | |
return "--output-dir is None", 500 | |
input = request.files | |
filename = request.form["filename"] | |
origin_image_bytes = input["image"].read() # RGB | |
ext = get_image_ext(origin_image_bytes) | |
image, alpha_channel, exif_infos = load_img(origin_image_bytes, return_exif=True) | |
save_path = os.path.join(output_dir, filename) | |
if alpha_channel is not None: | |
if alpha_channel.shape[:2] != image.shape[:2]: | |
alpha_channel = cv2.resize( | |
alpha_channel, dsize=(image.shape[1], image.shape[0]) | |
) | |
image = np.concatenate((image, alpha_channel[:, :, np.newaxis]), axis=-1) | |
pil_image = Image.fromarray(image) | |
img_bytes = pil_to_bytes( | |
pil_image, | |
ext, | |
quality=image_quality, | |
exif_infos=exif_infos, | |
) | |
with open(save_path, "wb") as fw: | |
fw.write(img_bytes) | |
return "ok", 200 | |
def medias(tab): | |
if tab == "image": | |
response = make_response(jsonify(thumb.media_names), 200) | |
else: | |
response = make_response(jsonify(thumb.output_media_names), 200) | |
# response.last_modified = thumb.modified_time[tab] | |
# response.cache_control.no_cache = True | |
# response.cache_control.max_age = 0 | |
# response.make_conditional(request) | |
return response | |
def media_file(tab, filename): | |
if tab == "image": | |
return send_from_directory(thumb.root_directory, filename) | |
return send_from_directory(thumb.output_dir, filename) | |
def media_thumbnail_file(tab, filename): | |
args = request.args | |
width = args.get("width") | |
height = args.get("height") | |
if width is None and height is None: | |
width = 256 | |
if width: | |
width = int(float(width)) | |
if height: | |
height = int(float(height)) | |
directory = thumb.root_directory | |
if tab == "output": | |
directory = thumb.output_dir | |
thumb_filename, (width, height) = thumb.get_thumbnail( | |
directory, filename, width, height | |
) | |
thumb_filepath = f"{app.config['THUMBNAIL_MEDIA_THUMBNAIL_ROOT']}{thumb_filename}" | |
response = make_response(send_file(thumb_filepath)) | |
response.headers["X-Width"] = str(width) | |
response.headers["X-Height"] = str(height) | |
return response | |
#不使用接口,而是直接使用 | |
# @app.route("/inpaint", methods=["POST"]) | |
#每次上传一个图片和遮罩 =>files ,然后返回bytes数据 | |
def process(files:dict,payload:dict): | |
input = files | |
# RGB | |
origin_image_bytes = input["image"].read() | |
image, alpha_channel, exif_infos = load_img(origin_image_bytes, return_exif=True) | |
mask, _ = load_img(input["mask"].read(), gray=True) | |
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] | |
if image.shape[:2] != mask.shape[:2]: | |
return ( | |
f"Mask shape{mask.shape[:2]} not queal to Image shape{image.shape[:2]}", | |
400, | |
) | |
original_shape = image.shape | |
interpolation = cv2.INTER_CUBIC | |
form = payload | |
size_limit = max(image.shape) | |
if "paintByExampleImage" in input: | |
paint_by_example_example_image, _ = load_img( | |
input["paintByExampleImage"].read() | |
) | |
paint_by_example_example_image = Image.fromarray(paint_by_example_example_image) | |
else: | |
paint_by_example_example_image = None | |
config = Config( | |
ldm_steps=form["ldmSteps"], | |
ldm_sampler=form["ldmSampler"], | |
hd_strategy=form["hdStrategy"], | |
zits_wireframe=form["zitsWireframe"], | |
hd_strategy_crop_margin=form["hdStrategyCropMargin"], | |
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"], | |
hd_strategy_resize_limit=form["hdStrategyResizeLimit"], | |
prompt=form["prompt"], | |
negative_prompt=form["negativePrompt"], | |
use_croper=form["useCroper"], | |
croper_x=form["croperX"], | |
croper_y=form["croperY"], | |
croper_height=form["croperHeight"], | |
croper_width=form["croperWidth"], | |
sd_scale=form["sdScale"], | |
sd_mask_blur=form["sdMaskBlur"], | |
sd_strength=form["sdStrength"], | |
sd_steps=form["sdSteps"], | |
sd_guidance_scale=form["sdGuidanceScale"], | |
sd_sampler=form["sdSampler"], | |
sd_seed=form["sdSeed"], | |
sd_match_histograms=form["sdMatchHistograms"], | |
cv2_flag=form["cv2Flag"], | |
cv2_radius=form["cv2Radius"], | |
paint_by_example_steps=form["paintByExampleSteps"], | |
paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"], | |
paint_by_example_mask_blur=form["paintByExampleMaskBlur"], | |
paint_by_example_seed=form["paintByExampleSeed"], | |
paint_by_example_match_histograms=form["paintByExampleMatchHistograms"], | |
paint_by_example_example_image=paint_by_example_example_image, | |
p2p_steps=form["p2pSteps"], | |
p2p_image_guidance_scale=form["p2pImageGuidanceScale"], | |
p2p_guidance_scale=form["p2pGuidanceScale"], | |
controlnet_conditioning_scale=form["controlnet_conditioning_scale"], | |
controlnet_method=form["controlnet_method"], | |
) | |
if config.sd_seed == -1: | |
config.sd_seed = random.randint(1, 999999999) | |
if config.paint_by_example_seed == -1: | |
config.paint_by_example_seed = random.randint(1, 999999999) | |
logger.info(f"Origin image shape: {original_shape}") | |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) | |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) | |
start = time.time() | |
try: | |
res_np_img = model(image, mask, config) | |
except RuntimeError as e: | |
if "CUDA out of memory. " in str(e): | |
# NOTE: the string may change? | |
return "CUDA out of memory", 500 | |
else: | |
logger.exception(e) | |
return f"{str(e)}", 500 | |
finally: | |
logger.info(f"process time: {(time.time() - start) * 1000}ms") | |
torch_gc() | |
res_np_img = cv2.cvtColor(res_np_img.astype(np.uint8), cv2.COLOR_BGR2RGB) | |
if alpha_channel is not None: | |
if alpha_channel.shape[:2] != res_np_img.shape[:2]: | |
alpha_channel = cv2.resize( | |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0]) | |
) | |
res_np_img = np.concatenate( | |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1 | |
) | |
ext = get_image_ext(origin_image_bytes) | |
bytes_io = io.BytesIO( | |
pil_to_bytes( | |
Image.fromarray(res_np_img), | |
ext, | |
quality=image_quality, | |
exif_infos=exif_infos, | |
) | |
) | |
return bytes_io | |
def run_plugin(): | |
form = request.form | |
files = request.files | |
name = form["name"] | |
if name not in plugins: | |
return "Plugin not found", 500 | |
origin_image_bytes = files["image"].read() # RGB | |
rgb_np_img, alpha_channel, exif_infos = load_img( | |
origin_image_bytes, return_exif=True | |
) | |
start = time.time() | |
try: | |
form = dict(form) | |
if name == InteractiveSeg.name: | |
img_md5 = hashlib.md5(origin_image_bytes).hexdigest() | |
form["img_md5"] = img_md5 | |
bgr_res = plugins[name](rgb_np_img, files, form) | |
except RuntimeError as e: | |
torch.cuda.empty_cache() | |
if "CUDA out of memory. " in str(e): | |
# NOTE: the string may change? | |
return "CUDA out of memory", 500 | |
else: | |
logger.exception(e) | |
return "Internal Server Error", 500 | |
logger.info(f"{name} process time: {(time.time() - start) * 1000}ms") | |
torch_gc() | |
if name == MakeGIF.name: | |
return send_file( | |
io.BytesIO(bgr_res), | |
mimetype="image/gif", | |
as_attachment=True, | |
download_name=form["filename"], | |
) | |
if name == InteractiveSeg.name: | |
return make_response( | |
send_file( | |
io.BytesIO(numpy_to_bytes(bgr_res, "png")), | |
mimetype="image/png", | |
) | |
) | |
if name in [RemoveBG.name, AnimeSeg.name]: | |
rgb_res = bgr_res | |
ext = "png" | |
else: | |
rgb_res = cv2.cvtColor(bgr_res, cv2.COLOR_BGR2RGB) | |
ext = get_image_ext(origin_image_bytes) | |
if alpha_channel is not None: | |
if alpha_channel.shape[:2] != rgb_res.shape[:2]: | |
alpha_channel = cv2.resize( | |
alpha_channel, dsize=(rgb_res.shape[1], rgb_res.shape[0]) | |
) | |
rgb_res = np.concatenate( | |
(rgb_res, alpha_channel[:, :, np.newaxis]), axis=-1 | |
) | |
response = make_response( | |
send_file( | |
io.BytesIO( | |
pil_to_bytes( | |
Image.fromarray(rgb_res), | |
ext, | |
quality=image_quality, | |
exif_infos=exif_infos, | |
) | |
), | |
mimetype=f"image/{ext}", | |
) | |
) | |
return response | |
def get_server_config(): | |
return { | |
"isControlNet": is_controlnet, | |
"controlNetMethod": controlnet_method, | |
"isDisableModelSwitchState": is_disable_model_switch, | |
"isEnableAutoSaving": is_enable_auto_saving, | |
"enableFileManager": is_enable_file_manager, | |
"plugins": list(plugins.keys()), | |
}, 200 | |
def current_model(): | |
return model.name, 200 | |
def model_downloaded(name): | |
return str(model.is_downloaded(name)), 200 | |
def get_is_desktop(): | |
return str(is_desktop), 200 | |
def switch_model(): | |
if is_disable_model_switch: | |
return "Switch model is disabled", 400 | |
new_name = request.form.get("name") | |
if new_name == model.name: | |
return "Same model", 200 | |
try: | |
model.switch(new_name) | |
except NotImplementedError: | |
return f"{new_name} not implemented", 403 | |
return f"ok, switch to {new_name}", 200 | |
def index(): | |
return send_file(os.path.join(BUILD_DIR, "index.html")) | |
def set_input_photo(): | |
if input_image_path: | |
with open(input_image_path, "rb") as f: | |
image_in_bytes = f.read() | |
return send_file( | |
input_image_path, | |
as_attachment=True, | |
download_name=Path(input_image_path).name, | |
mimetype=f"image/{get_image_ext(image_in_bytes)}", | |
) | |
else: | |
return "No Input Image" | |
def build_plugins(args): | |
global plugins | |
if args.enable_interactive_seg: | |
logger.info(f"Initialize {InteractiveSeg.name} plugin") | |
plugins[InteractiveSeg.name] = InteractiveSeg( | |
args.interactive_seg_model, args.interactive_seg_device | |
) | |
if args.enable_remove_bg: | |
logger.info(f"Initialize {RemoveBG.name} plugin") | |
plugins[RemoveBG.name] = RemoveBG() | |
if args.enable_anime_seg: | |
logger.info(f"Initialize {AnimeSeg.name} plugin") | |
plugins[AnimeSeg.name] = AnimeSeg() | |
if args.enable_realesrgan: | |
logger.info( | |
f"Initialize {RealESRGANUpscaler.name} plugin: {args.realesrgan_model}, {args.realesrgan_device}" | |
) | |
plugins[RealESRGANUpscaler.name] = RealESRGANUpscaler( | |
args.realesrgan_model, | |
args.realesrgan_device, | |
no_half=args.realesrgan_no_half, | |
) | |
if args.enable_gfpgan: | |
logger.info(f"Initialize {GFPGANPlugin.name} plugin") | |
if args.enable_realesrgan: | |
logger.info("Use realesrgan as GFPGAN background upscaler") | |
else: | |
logger.info( | |
f"GFPGAN no background upscaler, use --enable-realesrgan to enable it" | |
) | |
plugins[GFPGANPlugin.name] = GFPGANPlugin( | |
args.gfpgan_device, upscaler=plugins.get(RealESRGANUpscaler.name, None) | |
) | |
if args.enable_restoreformer: | |
logger.info(f"Initialize {RestoreFormerPlugin.name} plugin") | |
plugins[RestoreFormerPlugin.name] = RestoreFormerPlugin( | |
args.restoreformer_device, | |
upscaler=plugins.get(RealESRGANUpscaler.name, None), | |
) | |
if args.enable_gif: | |
logger.info(f"Initialize GIF plugin") | |
plugins[MakeGIF.name] = MakeGIF() | |
def main(args): | |
global model | |
global device | |
global input_image_path | |
global is_disable_model_switch | |
global is_enable_file_manager | |
global is_desktop | |
global thumb | |
global output_dir | |
global is_enable_auto_saving | |
global is_controlnet | |
global controlnet_method | |
global image_quality | |
build_plugins(args) | |
image_quality = args.quality | |
if args.sd_controlnet and args.model in SD15_MODELS: | |
is_controlnet = True | |
controlnet_method = args.sd_controlnet_method | |
output_dir = args.output_dir | |
if output_dir: | |
is_enable_auto_saving = True | |
device = torch.device(args.device) | |
is_disable_model_switch = args.disable_model_switch | |
is_desktop = args.gui | |
if is_disable_model_switch: | |
logger.info( | |
f"Start with --disable-model-switch, model switch on frontend is disable" | |
) | |
if args.input and os.path.isdir(args.input): | |
logger.info(f"Initialize file manager") | |
thumb = FileManager(app) | |
is_enable_file_manager = True | |
app.config["THUMBNAIL_MEDIA_ROOT"] = args.input | |
app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"] = os.path.join( | |
args.output_dir, "lama_cleaner_thumbnails" | |
) | |
thumb.output_dir = Path(args.output_dir) | |
# thumb.start() | |
# try: | |
# while True: | |
# time.sleep(1) | |
# finally: | |
# thumb.image_dir_observer.stop() | |
# thumb.image_dir_observer.join() | |
# thumb.output_dir_observer.stop() | |
# thumb.output_dir_observer.join() | |
else: | |
input_image_path = args.input | |
model = ModelManager( | |
name=args.model, | |
sd_controlnet=args.sd_controlnet, | |
sd_controlnet_method=args.sd_controlnet_method, | |
device=device, | |
no_half=args.no_half, | |
hf_access_token=args.hf_access_token, | |
disable_nsfw=args.sd_disable_nsfw or args.disable_nsfw, | |
sd_cpu_textencoder=args.sd_cpu_textencoder, | |
sd_run_local=args.sd_run_local, | |
sd_local_model_path=args.sd_local_model_path, | |
local_files_only=args.local_files_only, | |
cpu_offload=args.cpu_offload, | |
enable_xformers=args.sd_enable_xformers or args.enable_xformers, | |
callback=diffuser_callback, | |
) | |
#只初始化,不构建flask ,方便使用process函数 | |
# if args.gui: | |
# app_width, app_height = args.gui_size | |
# from flaskwebgui import FlaskUI | |
# | |
# ui = FlaskUI( | |
# app, | |
# socketio=socketio, | |
# width=app_width, | |
# height=app_height, | |
# host=args.host, | |
# port=args.port, | |
# close_server_on_exit=not args.no_gui_auto_close, | |
# ) | |
# ui.run() | |
# else: | |
# socketio.run( | |
# app, | |
# host=args.host, | |
# port=args.port, | |
# debug=args.debug, | |
# allow_unsafe_werkzeug=True, | |
# ) | |