File size: 24,661 Bytes
39c1558
 
 
 
 
 
 
 
 
 
 
3b99f69
39c1558
 
 
 
 
 
 
 
 
 
7ab60ac
969c412
 
 
420a82a
 
 
b8202f6
a745359
 
 
39c1558
 
 
3b99f69
 
 
 
 
 
 
 
 
39c1558
 
 
 
 
 
 
 
3b99f69
 
02b7f61
39c1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371ebaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39c1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c10a4
371ebaa
 
 
39c1558
 
371ebaa
 
39c1558
371ebaa
 
39c1558
371ebaa
39c1558
8651acb
371ebaa
 
 
81f2a2c
 
 
371ebaa
 
 
81f2a2c
371ebaa
 
 
 
 
 
 
 
81f2a2c
371ebaa
 
 
 
 
 
 
81f2a2c
371ebaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81f2a2c
371ebaa
 
 
02b7f61
39c1558
 
 
 
60c10a4
39c1558
 
 
 
371ebaa
39c1558
733839a
39c1558
7ab60ac
 
39c1558
b8202f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f62ea
 
 
 
 
 
 
 
 
 
 
 
 
b8202f6
 
 
733839a
b8202f6
 
 
39c1558
 
 
 
 
 
 
 
 
7ab60ac
39c1558
 
 
 
 
 
 
 
 
 
 
21d7e12
39c1558
 
 
 
 
523646c
39c1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb4f91
 
 
 
 
 
 
 
 
 
39c1558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad571ab
 
39c1558
 
 
 
 
 
 
 
02b7f61
39c1558
 
 
 
9867fa1
8651acb
733839a
 
d8b1ce2
 
 
733839a
d8b1ce2
 
733839a
d8b1ce2
 
 
 
 
 
 
 
 
 
 
 
 
733839a
d8b1ce2
733839a
d8b1ce2
733839a
 
a5bd649
ad571ab
39c1558
 
67734fe
39c1558
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# rogerxavier-ocr-with-fastapi.hf.space
import os
##这个模型目前只适合确定文本框顺序后再识别,因为如果后面的
##完整图片处理的反例  现在处理的图片是10\0.jpg
# [[[953, 743], [987, 743], [987, 867], [953, 867]], [[917, 745], [951, 745], [951, 867], [917, 867]], [[881, 741], [918, 742], [915, 898], [877, 897]], [[843, 743], [879, 743], [879, 809], [843, 809]], [[629, 1058], [669, 1058], [669, 1210], [629, 1210]], [[549, 1227], [583, 1227], [583, 1381], [549, 1381]], [[535, 115], [563, 115], [563, 145], [535, 145]], [[535, 147], [563, 147], [563, 213], [535, 213]], [[507, 443], [539, 443], [539, 579], [507, 579]], [[505, 115], [533, 115], [533, 197], [505, 197]], [[511, 1225], [547, 1225], [547, 1321], [511, 1321]], [[475, 117], [503, 117], [503, 265], [475, 265]], [[467, 421], [503, 421], [503, 575], [467, 575]], [[419, 235], [447, 235], [447, 337], [419, 337]], [[387, 236], [417, 237], [414, 339], [385, 338]], [[209, 796], [242, 797], [239, 921], [206, 920]], [[175, 173], [205, 173], [205, 225], [175, 225]], [[177, 231], [205, 231], [205, 285], [177, 285]], [[103, 1153], [129, 1153], [129, 1223], [103, 1223]], [[41, 100], [108, 101], [104, 549], [36, 548]]]
# ['就算是你', '没有圣剑', '也不可能有', '胜算', '就算如此', '我也不觉得', '做', ':做个', '·就不觉得', '老好人', '你可怕', '也要有个限度', '我很恐怖吗', '该说真是', '无药可救', '说的是呢', '这个', '但是', '为何?', '第二话让人怜爱']

import requests

import tempfile
import time
import re #正则对话剔除非中文,保留'\n'
from moviepy.audio.AudioClip import AudioArrayClip
from moviepy.editor import *
import cv2
import numpy as np
import io
import base64
import json
from io import BytesIO
import pandas as pd
from PIL import Image
import os
from mutagen.mp3 import MP3 #读取音频获取时长


azure_speech_key = os.getenv('azure_speech_key')
azure_service_region = os.getenv('azure_service_region')
my_openai_key = os.getenv('my_openai_key')
speech_synthesis_voice_name = "zh-CN-YunhaoNeural"  ##云皓
print("azure key是",azure_speech_key)
print("azure_service_region是",azure_service_region)
print("my_openai_key",my_openai_key)

#通过去水印完整漫画图片->获取相应的对话框图片->获取对话框文字->返回对话框文字
def get_image_copywrite(image_path:"图片路径(包含后缀)",dialog_cut_path:"对话框切割路径")->"返回漫画关联对话框识别后得到的文案str(原文即可),也可能是none":
    def extract_chinese(text:str)->str:
        #剔除除了 '\n'外的非中文字符
        chinese_pattern = re.compile("[\u4e00-\u9fa5]+")  # 匹配中文字符的正则表达式
        chinese_text = ""
        for char in text:
            if char == '\n' or re.match(chinese_pattern, char):
                chinese_text += char
        return chinese_text
    
    dialog_texts = ''
    associate_dialog_img = get_associate_dialog(image_path=image_path,dialog_cut_path=dialog_cut_path)
    if len(associate_dialog_img)!=0:
        #如果有对应的对话框
        for dialog_img_path in associate_dialog_img:
            cur_dialog_texts = get_sorted_dialog_text(dialog_img_path)#一个对话框的文字list
            if cur_dialog_texts is not None:
                for dialog_text in cur_dialog_texts:
                    # dialog_texts += dialog_text
                    dialog_texts += extract_chinese(dialog_text)
                    #因为已经在数组中加入了\n 换行,这里就不用加了
            else:
                print(dialog_img_path+"识别是空-可能是有问题")
        return dialog_texts
    return None#不规范图片不请求,直接返回none

#通过传入无水印漫画图片对话框路径,得到关联的对话框图片list
def get_associate_dialog(image_path:"图片路径(包含后缀)",dialog_cut_path:"对话框切割路径")->"返回漫画关联对话框list,也可能是空的list":
    image_name = os.path.splitext(os.path.basename(image_path))[0]
    image_name_format = '{:03d}'.format(int(image_name))

    associated_dialogs = []
    for root, _, files in os.walk(dialog_cut_path):
        for file in files:
            if file.startswith(image_name_format) and file.endswith('.jpg'):
                associated_dialogs.append(os.path.join(root, file))

    return associated_dialogs


def merge_sublists(lists):
    merged = []
    for sublist in lists:
        found = False
        for m in merged:
            if any(elem in sublist for elem in m):
                m.extend(elem for elem in sublist if elem not in m)
                found = True
                break
        if not found:
            merged.append(sublist)
    return merged


# 任意两框进行中心高度差和中心宽度差比较,如果xy都相近,那么认为是同一个框的对话,加入一个对话数组里面,
# 最终将漫画块分成几个对话框数组,然后再对数组间进行从上到下,从右到左排序
# 定义一个函数来寻找相关的点并加入新的list
def find_associate_text(sorted_indices,centers,sorted_coordinates,boxInfo):
    associate_text_list = []
    related_groups = []
    for i in range(len(sorted_indices) - 1):
        for j in range(i+1 , len(sorted_indices)):
            if (abs(centers[sorted_indices[i]][1] - centers[sorted_indices[j]][1]) < abs(
                    (sorted_coordinates[i][2][1] - sorted_coordinates[i][0][1])) / 3) \
                    and (abs(centers[sorted_indices[i]][0] - centers[sorted_indices[j]][0]) < abs(
                (sorted_coordinates[i][2][0] - sorted_coordinates[i][0][0])) * 1.5):

                # Check if the points i and j are already in the same related group
                found = False
                for group in related_groups:
                    if i in group or j in group:
                        group.add(i)
                        group.add(j)
                        found = True
                        break
                if not found:
                    related_groups.append({i, j})


    for group in related_groups:
        text_group = []
        for idx in group:
            text_group.append(boxInfo['Text'][str(sorted_indices[idx])])#这里加入的是排序后的索引
        associate_text_list.append(text_group)

    return merge_sublists(associate_text_list),related_groups



 #先对组内对话从右到左排序,处理反馈到related_groups  (因为sorted_indices本身就是从右到左,从上到下排序后的)
# 这个记录的顺序改变,最后sorted_text = [boxInfo['Text'][str(i)] for i in sorted_indices]就可以得到正确的顺序
#要保证一个List中的组内有序和组间有序,通常应该先排序组内,然后再保持组间有序
def sort_associate_text_list(sorted_indices:list,related_groups:list,boxCoordinates,centers)->list:
    sorted_groups = []
    # 返回组内排序后的 sorted_groups
    for group in related_groups:
        group = list(group)  # 将集合转换为列表
        isVertical = False
        isCross = False
        # 前提是竖框->使用 lambda 函数按照中心点坐标的 x 值对 group 中的元素进行排序,使得x大的(靠右的)在前面
        for idx in group:
            if (boxCoordinates[sorted_indices[idx]][2][0] - boxCoordinates[sorted_indices[idx]][0][0]) > (
                    boxCoordinates[sorted_indices[idx]][2][1] - boxCoordinates[sorted_indices[idx]][0][1]):
                # 这里是宽>高,说明是横框
                isCross =True
                pass  # 你可以在这里添加你想要执行的代码
            else:
                # 这里宽<高,说明是竖框
                isVertical = True
                pass  # 你可以在这里添加你想要执行的代码
        if isVertical:
            group.sort(key=lambda idx:  centers[sorted_indices[idx]][0], reverse=True)
        if isCross:
            group.sort(key=lambda idx:  centers[sorted_indices[idx]][1], reverse=False)
        sorted_groups.append(group)

    return sorted_groups



#再对组间对话先上后下,从右到左排序,同时将单独对话加入合适位置.返回排序后的related_groups
def sort_dialog_list(sorted_indices:list,related_groups:list,sorted_coordinates)->list:
    sorted_groups = []
    related_groups_copy = related_groups.copy()
    sorted_indices_copy = sorted_indices.copy()
    added = {}
    # 返回组内排序后的 sorted_groups
    # 任意两框进行加权高度差值比较,然后交换顺序,而不是只遍历一遍交换,如果y中心点差在1/3 文本框长度下认为相同,这时按照x从右往左顺序看
    for i in range(len(sorted_indices) - 1):
        if ((
                             sorted_coordinates[i][2][0] - sorted_coordinates[i][0][0]) < (
                             sorted_coordinates[i][2][1] - sorted_coordinates[i][0][1])):

            # 竖框情况下(宽小于高),依次加入元素,加到在组中的那么后序按组顺序加,然后继续(再碰到不加)
            pass #竖框不动,横框剔除,后序不在次循环中储粮
        else:
            sorted_indices_copy.remove(i)
            # 横框情况下(宽大于高)#横框干脆不读了(从sorted_indices_copy中剔除),太影响了

    for idx in sorted_indices_copy:
        added[idx] = False
        for group in related_groups_copy:
            if idx in group:
                sorted_groups.append(group)
                related_groups_copy.remove(group)
                added[idx] = True
                break
        if not added[idx]:
            sorted_groups.append(idx)
    # 创建一个新列表来存储不应该单独存在的元素,并且游离的元素也变[]包裹
    filtered_data = []
    data = sorted_groups
    for item in data:
        if isinstance(item, list):
            # 如果元素是列表,则将其添加到新列表中
            filtered_data.append(item)
        else:
            # 如果元素不是列表,则检查是否存在于其他子项数组中,如果不存在则添加到新列表中
            is_in_sublist = False
            for sublist in data:
                if isinstance(sublist, list) and item in sublist:
                    is_in_sublist = True
                    break
            if not is_in_sublist:
                filtered_data.append([item])


    return filtered_data


def get_sorted_dialog_text(image_path:"包含后缀的文件路径")->"返回排序后的text list(一列或者几列话,反正是一个框的内容,几句不清楚,一个框的list当一次文案就行)  或者失败请求返回none":
    image_bytes = open(image_path, 'rb')
    headers = {
        'authority': 'rogerxavier-fastapi-t5-magi.hf.space',
        'scheme': 'https',
        'Accept': '*/*',
        'Accept-Encoding': 'gzip, deflate, br, zstd',
        'Accept-Language': 'zh-CN,zh;q=0.9',
        'Cookie': 'spaces-jwt=eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sIm9uQmVoYWxmT2YiOnsia2luZCI6InVzZXIiLCJfaWQiOiI2NDJhNTNiNTE2ZDRkODI5M2M5YjdiNzgiLCJ1c2VyIjoicm9nZXJ4YXZpZXIifSwiaWF0IjoxNzE2Njg3MzU3LCJzdWIiOiIvc3BhY2VzL3JvZ2VyeGF2aWVyL29jcl93aXRoX2Zhc3RhcGkiLCJleHAiOjE3MTY3NzM3NTcsImlzcyI6Imh0dHBzOi8vaHVnZ2luZ2ZhY2UuY28ifQ._sGdEgC-ijbIhLmB6iNSBQ_xHNzb4Ydb9mD0L3ByRmJSbB9ccfGbRgtNmkV1JLLldHp_VEKUSQt9Mwq_q4aGAQ',
        'Dnt': '1',
        'Priority': 'u=1, i',
        'Sec-Ch-Ua': '"Chromium";v="124", "Google Chrome";v="124", "Not-A.Brand";v="99"',
        'Sec-Ch-Ua-Mobile': '?0',
        'Sec-Ch-Ua-Platform': '"Windows"',
        'Sec-Fetch-Dest': 'empty',
        'Sec-Fetch-Mode': 'cors',
        'Sec-Fetch-Site': 'same-origin',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36'
    }
    files = {
        "image": image_bytes,
    }
    try:
        resp = requests.post("https://rogerxavier-ocr-with-fastapi.hf.space/getCoordinates", files=files,headers=headers)#还是有header才能跑
        #先json转换,0为坐标list合集,1为 boxid和text合集
        boxCoordinates , boxInfo = resp.json()[0],resp.json()[1] #分别是list和dict类型
        print("ofa ocr识别漫画块成功返回")
        print("boxCoordinates是",boxCoordinates)
        print("boxInfo是",boxInfo)

        # 计算文本框的中心点,以便按照从右往左,从上往下的顺序进行排序
        centers = [((box[0][0] + box[2][0]) / 2, (box[0][1] + box[2][1]) / 2) for box in boxCoordinates]
        # 根据每个元组的第一个元素进行降序排序,如果第一个元素相同时,则根据第二个元素进行升序排序。即先关注y后关注x(更重上下)
        sorted_indices = sorted(range(len(centers)), key=lambda i: ( centers[i][1],-centers[i][0]))

        # # 即先关注x后关注y(更注重从右到左)
        # sorted_indices = sorted(range(len(centers)), key=lambda i: ( -centers[i][0],centers[i][1]))

        # 获取排序后的文本框坐标和对应的文字
        sorted_coordinates = [boxCoordinates[i] for i in sorted_indices]


        # 调用函数并打印结果
        associate_text_list,related_groups = find_associate_text(sorted_indices,centers,sorted_coordinates,boxInfo)
        #print("相关list是",associate_text_list)
        #print("related_groups是",related_groups)
        #print("sorted_indices是",sorted_indices)

        related_groups = sort_associate_text_list(sorted_indices,related_groups,boxCoordinates,centers)

        #print("组内排序后的related_groups是",related_groups)
        #[[3, 4], [7, 5, 6], [10, 9], [11, 12, 13], [15, 16, 14]]

        related_groups_in_sorted_indices = []
        for group in related_groups:
            related_groups_in_sorted_indices_item = []
            for idx in group:
                related_groups_in_sorted_indices_item.append(sorted_indices[idx])# 这里加入的是排序后的索引
            related_groups_in_sorted_indices.append(related_groups_in_sorted_indices_item)
        #print("related_groups_in_sorted_indices是",related_groups_in_sorted_indices)
        #related_groups_in_sorted_indices->[[7, 6], [3, 2, 4], [9, 10], [11, 13, 12], [15, 16, 14]]->
        #期望结果[[0],[3, 2, 4],[1],[5],[7, 6],[8], [9, 10],[11, 13, 12], [15, 16, 14]]




        related_groups = sort_dialog_list(sorted_indices,related_groups,sorted_coordinates)
        #print("related_groups组件排序后是:",related_groups)



        # 将子列表中的数字提取出来组成一个新的列表(纯数字),去除子项间的[],
        # 如[[3, 4], [7, 5, 6], [10, 9], [11, 12, 13], [15, 16, 14]] ->[3, 4, 7, 5, 6, 10, 9, 11, 12, 13, 15, 16, 14]
        flattened_list = [num for sublist in related_groups for num in sublist]
        added_indices = set()
        sorted_text = []
        for i in flattened_list:
            for sublist in related_groups:
                if i in sublist:
                    if i == sublist[-1] and i not in added_indices:
                        sorted_text.append(boxInfo['Text'][str(sorted_indices[i])] + '\n')
                        added_indices.add(i)
                    elif i not in added_indices:
                        sorted_text.append(boxInfo['Text'][str(sorted_indices[i])])
                        added_indices.add(i)

        #print("不完整的sorted_text是",sorted_text)


        # 不用在最后一个项末尾添加"\n",从而隔开其他的漫画块对话(因为总会有最后一个子块,因而上述方式就可以加上了)
        sorted_coordinates = [boxCoordinates[i] for i in sorted_indices]
        print(sorted_coordinates)
        print(sorted_text)
        return sorted_text
    except Exception as e:
        print("ofa ocr图片请求出现问题")
        print(e)
        return None



#通过文字获取音频
def get_audio_data(text:str)-> "返回audio data io句柄, duration(也有可能包含无效字符导致生成音频400错误)":
    # Creates an instance of a speech config with specified subscription key and service region.
    speech_key = azure_speech_key
    service_region = azure_service_region

    voiceText = text
    url = f"https://{service_region}.tts.speech.microsoft.com/cognitiveservices/v1"

    headers = {
        "Ocp-Apim-Subscription-Key": speech_key,
        "Content-Type": "application/ssml+xml",
        "X-Microsoft-OutputFormat": "audio-16khz-128kbitrate-mono-mp3",
        "User-Agent": "curl"
    }
    
    ssml_text = '''
    <speak version='1.0' xml:lang='zh-CN'>
        <voice xml:lang='zh-CN' xml:gender='male' name='{voiceName}'>
            {voiceText}
        </voice>
    </speak>
    '''.format(voiceName=speech_synthesis_voice_name,voiceText = voiceText)
    
    response = requests.post(url, headers=headers, data=ssml_text.encode('utf-8'))
    
    if response.status_code == 200:
        # 创建临时文件 -当前路径下面
        try:
            with tempfile.NamedTemporaryFile(dir='/mp3_out/',delete=False) as temp_file:
                temp_file.write(response.content)
                temp_file.close()
                audio = MP3(temp_file.name)
                # 获取音频时长(单位为秒)
                audio_duration_seconds = audio.info.length #int即可
                # 在这里完成您对文件的操作,比如返回文件名
                file_name = temp_file.name
            return file_name, audio_duration_seconds
        except Exception as e:
            print("可能遇到mp3 can not sync to MPEG frame错误,总之音频能获取到但是不能识别",e)
            return None,None#这种也返回none告知错误不要管了

    else:
        print("Error: Failed to synthesize audio. Status code:", response.status_code)
        return None,None


    


# 补零函数,将数字部分补齐为指定长度
def zero_pad(s, length):
    return s.zfill(length)


def gpt_polish(text:str)->"通过gpt润色str文案并返回str新文案,或者gpt请求失败none":
    # Set your OpenAI API key
    api_key = my_openai_key

    # Define the headers
    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json',
    }

    # Chat Completions request data
    data = {
        'model': 'gpt-3.5-turbo',  # Replace with your chosen model
        'messages': [
            {'role': 'system', 'content': "你是一个assistant,能够根据user发送的漫画中提取的对话文字,生成一个短视频中一帧的文案(1-2句话)"},
            {'role': 'user', 'content': text}
        ]
    }
    try:
        response = requests.post('https://api.yingwu.lol/v1/chat/completions', headers=headers, data=json.dumps(data))
        print("gpt请求的结果是",response.text)
        print("润色后文案是:"+response.json()['choices'][0]['message']['content'])
        return response.json()['choices'][0]['message']['content']
    except Exception as e:
        print("gpt润色文案失败:")
        print(e)
        return None
if __name__ == '__main__':
    # 获取存放去水印漫画图片的路径 ---放这里是因为获取对话文字时需要和原图关联
    img_path = 'manga1'
    # 获取切割后的文本框路径
    dialog_img_path = 'manga12'

    #获取漫画原图无水印的加入image_files,并排序
    subdir_path = os.path.join(os.getcwd(), img_path)
    # 对话图片经过加入list并补0确定顺序
    image_files = []
    for root, dirs, files in os.walk(subdir_path):
        for file in files:
            if file.endswith(".jpg") or file.endswith(".png"):
                image_files.append(os.path.relpath(os.path.join(root, file)))
    # 对对话框文件名中的数字部分进行补零操作-这样顺序会正常
    image_files.sort(
        key=lambda x: zero_pad(''.join(filter(str.isdigit, os.path.splitext(os.path.basename(x))[0])), 3))

    dialog_subdir_path = os.path.join(os.getcwd(), dialog_img_path)
    # 对话图片经过加入list并补0确定顺序
    dialog_image_files = []
    for root, dirs, files in os.walk(dialog_subdir_path):
        for file in files:
            if file.endswith(".jpg") or file.endswith(".png"):
                dialog_image_files.append(os.path.relpath(os.path.join(root, file)))
    # 对对话框文件名中的数字部分进行补零操作-这样顺序会正常
    dialog_image_files.sort(
        key=lambda x: zero_pad(''.join(filter(str.isdigit, os.path.splitext(os.path.basename(x))[0])), 3))
    # 对话图片经过加入list并补0确定顺序


    ###音视频相关参数-------------------------------------------------------------------------------------
    ##这个是临时生成音频文件的全局变量--方便后续删除
    filename = ''
    # 视频分辨率和帧率
    # 获取第一张图片的尺寸
    image = Image.open(image_files[0])
    # width, height = 1125, 1600  # 
    width, height = image.size #使用图片的size作为宽高
    #读取第一个图片作为cover保存到cover/0.jpg
    # 定义要保存的文件路径
    save_path = os.path.join("cover", "0.jpg")
    # 保存图片文件
    image.save(save_path)
    #读取第一个图片作为cover保存到cover/0.jpg

    
    fps = 30
    font_path = '1.ttf'  # 设置字体以防默认字体无法同时处理中英文
    # 创建视频编辑器
    video_clips = []
    ###音视频相关参数-------------------------------------------------------------------------------------



    #因为是根据原图无水印的进行遍历,所以处理前要进行筛选,只处理能找到相应对话框图片的原图
    filtered_image_files = []
    for image_path in image_files:
        dialog_list = get_associate_dialog(image_path, dialog_img_path)
        if dialog_list:
            filtered_image_files.append(image_path)

    image_files = filtered_image_files

    

    for idx, image_file in enumerate(image_files):
        print("现在处理的图片是"+image_file)
        #后面是视音频生成部分-这里图片需要用到完整的去水印的而不是对话框用于识别的
        img = cv2.imread(image_file)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  ##只支持英文路径

        ##获取当前图片对应的对话框识别文字(还需gpt处理后作为字幕文案)
        cur_copywrite = get_image_copywrite(image_file,dialog_img_path)  # image_file就是6.jpg了
        #cur_copywrite = gpt_polish(cur_copywrite)#不用gpt,只用新版漫画块得到的100%识别原文即可

        if cur_copywrite is not None:

            ##获取当前图片对应的临时音频文件名称和文案时长
            # filename, duration = get_audio_data(cur_copywrite)
            filename, duration = get_audio_data(cur_copywrite)#这里是一个原图的全部文案,不是一个漫画块的,不能在这里加\n断开不同漫画块的对话
            if filename is not None:
                print("存放临时mp3文件的路径是",filename)

                #含字幕版
                # clip = ImageClip(img).set_duration(duration).resize((width, height))  # 初始clip
    
                # txt_clip = TextClip(cur_copywrite, fontsize=40, color='white', bg_color='black',
                #                     font=font_path)  ##文本clip后加入视频
    
                # txt_clip = txt_clip.set_pos(('center', 'bottom')).set_duration(duration)
                # # 创建音频剪辑
                # audio_clip = AudioFileClip(filename)
                # clip = clip.set_audio(audio_clip)  # 将音频与视频片段关联
                # clip = CompositeVideoClip([clip, txt_clip])
                # video_clips.append(clip)
                #含字幕版

                #不含字幕版
                clip = ImageClip(img).set_duration(duration).resize((width, height))
        
                # 去掉添加字幕的部分(原文太长了,再加上音频都是一整个原图(即多个漫画块)的全部内容,也没法分割)
                
                audio_clip = AudioFileClip(filename)
                clip = clip.set_audio(audio_clip)
                video_clips.append(clip)
                #不含字幕版
            else:
                pass ##音频特殊字符或者其他原因无法生成跳过

        
    video = concatenate_videoclips(video_clips)
    # 保存视频
    video.write_videofile('mp4_out/output_video.mp4', fps=fps,temp_audiofile="mp3_out/temp.mp3")
    # # 在文件关闭后删除临时文件
    print("删除临时mp3文件", filename)
    os.remove(filename)