Spaces:
Sleeping
Sleeping
import os | |
import time | |
import cv2 | |
import torch | |
import torch.nn.functional as F | |
from lama_cleaner.helper import get_cache_path_by_url, load_jit_model | |
from lama_cleaner.schema import Config | |
import numpy as np | |
from lama_cleaner.model.base import InpaintModel | |
ZITS_INPAINT_MODEL_URL = os.environ.get( | |
"ZITS_INPAINT_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt", | |
) | |
ZITS_INPAINT_MODEL_MD5 = os.environ.get( | |
"ZITS_INPAINT_MODEL_MD5", "9978cc7157dc29699e42308d675b2154" | |
) | |
ZITS_EDGE_LINE_MODEL_URL = os.environ.get( | |
"ZITS_EDGE_LINE_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt", | |
) | |
ZITS_EDGE_LINE_MODEL_MD5 = os.environ.get( | |
"ZITS_EDGE_LINE_MODEL_MD5", "55e31af21ba96bbf0c80603c76ea8c5f" | |
) | |
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get( | |
"ZITS_STRUCTURE_UPSAMPLE_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt", | |
) | |
ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5 = os.environ.get( | |
"ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5", "3d88a07211bd41b2ec8cc0d999f29927" | |
) | |
ZITS_WIRE_FRAME_MODEL_URL = os.environ.get( | |
"ZITS_WIRE_FRAME_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt", | |
) | |
ZITS_WIRE_FRAME_MODEL_MD5 = os.environ.get( | |
"ZITS_WIRE_FRAME_MODEL_MD5", "a9727c63a8b48b65c905d351b21ce46b" | |
) | |
def resize(img, height, width, center_crop=False): | |
imgh, imgw = img.shape[0:2] | |
if center_crop and imgh != imgw: | |
# center crop | |
side = np.minimum(imgh, imgw) | |
j = (imgh - side) // 2 | |
i = (imgw - side) // 2 | |
img = img[j : j + side, i : i + side, ...] | |
if imgh > height and imgw > width: | |
inter = cv2.INTER_AREA | |
else: | |
inter = cv2.INTER_LINEAR | |
img = cv2.resize(img, (height, width), interpolation=inter) | |
return img | |
def to_tensor(img, scale=True, norm=False): | |
if img.ndim == 2: | |
img = img[:, :, np.newaxis] | |
c = img.shape[-1] | |
if scale: | |
img_t = torch.from_numpy(img).permute(2, 0, 1).float().div(255) | |
else: | |
img_t = torch.from_numpy(img).permute(2, 0, 1).float() | |
if norm: | |
mean = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1) | |
std = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1) | |
img_t = (img_t - mean) / std | |
return img_t | |
def load_masked_position_encoding(mask): | |
ones_filter = np.ones((3, 3), dtype=np.float32) | |
d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32) | |
d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32) | |
d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32) | |
d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32) | |
str_size = 256 | |
pos_num = 128 | |
ori_mask = mask.copy() | |
ori_h, ori_w = ori_mask.shape[0:2] | |
ori_mask = ori_mask / 255 | |
mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA) | |
mask[mask > 0] = 255 | |
h, w = mask.shape[0:2] | |
mask3 = mask.copy() | |
mask3 = 1.0 - (mask3 / 255.0) | |
pos = np.zeros((h, w), dtype=np.int32) | |
direct = np.zeros((h, w, 4), dtype=np.int32) | |
i = 0 | |
while np.sum(1 - mask3) > 0: | |
i += 1 | |
mask3_ = cv2.filter2D(mask3, -1, ones_filter) | |
mask3_[mask3_ > 0] = 1 | |
sub_mask = mask3_ - mask3 | |
pos[sub_mask == 1] = i | |
m = cv2.filter2D(mask3, -1, d_filter1) | |
m[m > 0] = 1 | |
m = m - mask3 | |
direct[m == 1, 0] = 1 | |
m = cv2.filter2D(mask3, -1, d_filter2) | |
m[m > 0] = 1 | |
m = m - mask3 | |
direct[m == 1, 1] = 1 | |
m = cv2.filter2D(mask3, -1, d_filter3) | |
m[m > 0] = 1 | |
m = m - mask3 | |
direct[m == 1, 2] = 1 | |
m = cv2.filter2D(mask3, -1, d_filter4) | |
m[m > 0] = 1 | |
m = m - mask3 | |
direct[m == 1, 3] = 1 | |
mask3 = mask3_ | |
abs_pos = pos.copy() | |
rel_pos = pos / (str_size / 2) # to 0~1 maybe larger than 1 | |
rel_pos = (rel_pos * pos_num).astype(np.int32) | |
rel_pos = np.clip(rel_pos, 0, pos_num - 1) | |
if ori_w != w or ori_h != h: | |
rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST) | |
rel_pos[ori_mask == 0] = 0 | |
direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST) | |
direct[ori_mask == 0, :] = 0 | |
return rel_pos, abs_pos, direct | |
def load_image(img, mask, device, sigma256=3.0): | |
""" | |
Args: | |
img: [H, W, C] RGB | |
mask: [H, W] 255 为 masks 区域 | |
sigma256: | |
Returns: | |
""" | |
h, w, _ = img.shape | |
imgh, imgw = img.shape[0:2] | |
img_256 = resize(img, 256, 256) | |
mask = (mask > 127).astype(np.uint8) * 255 | |
mask_256 = cv2.resize(mask, (256, 256), interpolation=cv2.INTER_AREA) | |
mask_256[mask_256 > 0] = 255 | |
mask_512 = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_AREA) | |
mask_512[mask_512 > 0] = 255 | |
# original skimage implemention | |
# https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny | |
# low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max. | |
# high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max. | |
try: | |
import skimage | |
gray_256 = skimage.color.rgb2gray(img_256) | |
edge_256 = skimage.feature.canny(gray_256, sigma=3.0, mask=None).astype(float) | |
# cv2.imwrite("skimage_gray.jpg", (gray_256*255).astype(np.uint8)) | |
# cv2.imwrite("skimage_edge.jpg", (edge_256*255).astype(np.uint8)) | |
except: | |
gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY) | |
gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(7, 7), sigmaX=sigma256, sigmaY=sigma256) | |
edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2)) | |
# cv2.imwrite("opencv_edge.jpg", edge_256) | |
# line | |
img_512 = resize(img, 512, 512) | |
rel_pos, abs_pos, direct = load_masked_position_encoding(mask) | |
batch = dict() | |
batch["images"] = to_tensor(img.copy()).unsqueeze(0).to(device) | |
batch["img_256"] = to_tensor(img_256, norm=True).unsqueeze(0).to(device) | |
batch["masks"] = to_tensor(mask).unsqueeze(0).to(device) | |
batch["mask_256"] = to_tensor(mask_256).unsqueeze(0).to(device) | |
batch["mask_512"] = to_tensor(mask_512).unsqueeze(0).to(device) | |
batch["edge_256"] = to_tensor(edge_256, scale=False).unsqueeze(0).to(device) | |
batch["img_512"] = to_tensor(img_512).unsqueeze(0).to(device) | |
batch["rel_pos"] = torch.LongTensor(rel_pos).unsqueeze(0).to(device) | |
batch["abs_pos"] = torch.LongTensor(abs_pos).unsqueeze(0).to(device) | |
batch["direct"] = torch.LongTensor(direct).unsqueeze(0).to(device) | |
batch["h"] = imgh | |
batch["w"] = imgw | |
return batch | |
def to_device(data, device): | |
if isinstance(data, torch.Tensor): | |
return data.to(device) | |
if isinstance(data, dict): | |
for key in data: | |
if isinstance(data[key], torch.Tensor): | |
data[key] = data[key].to(device) | |
return data | |
if isinstance(data, list): | |
return [to_device(d, device) for d in data] | |
class ZITS(InpaintModel): | |
name = "zits" | |
min_size = 256 | |
pad_mod = 32 | |
pad_to_square = True | |
def __init__(self, device, **kwargs): | |
""" | |
Args: | |
device: | |
""" | |
super().__init__(device) | |
self.device = device | |
self.sample_edge_line_iterations = 1 | |
def init_model(self, device, **kwargs): | |
self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device, ZITS_WIRE_FRAME_MODEL_MD5) | |
self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device, ZITS_EDGE_LINE_MODEL_MD5) | |
self.structure_upsample = load_jit_model( | |
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device, ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5 | |
) | |
self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device, ZITS_INPAINT_MODEL_MD5) | |
def is_downloaded() -> bool: | |
model_paths = [ | |
get_cache_path_by_url(ZITS_WIRE_FRAME_MODEL_URL), | |
get_cache_path_by_url(ZITS_EDGE_LINE_MODEL_URL), | |
get_cache_path_by_url(ZITS_STRUCTURE_UPSAMPLE_MODEL_URL), | |
get_cache_path_by_url(ZITS_INPAINT_MODEL_URL), | |
] | |
return all([os.path.exists(it) for it in model_paths]) | |
def wireframe_edge_and_line(self, items, enable: bool): | |
# 最终向 items 中添加 edge 和 line key | |
if not enable: | |
items["edge"] = torch.zeros_like(items["masks"]) | |
items["line"] = torch.zeros_like(items["masks"]) | |
return | |
start = time.time() | |
try: | |
line_256 = self.wireframe_forward( | |
items["img_512"], | |
h=256, | |
w=256, | |
masks=items["mask_512"], | |
mask_th=0.85, | |
) | |
except: | |
line_256 = torch.zeros_like(items["mask_256"]) | |
print(f"wireframe_forward time: {(time.time() - start) * 1000:.2f}ms") | |
# np_line = (line[0][0].numpy() * 255).astype(np.uint8) | |
# cv2.imwrite("line.jpg", np_line) | |
start = time.time() | |
edge_pred, line_pred = self.sample_edge_line_logits( | |
context=[items["img_256"], items["edge_256"], line_256], | |
mask=items["mask_256"].clone(), | |
iterations=self.sample_edge_line_iterations, | |
add_v=0.05, | |
mul_v=4, | |
) | |
print(f"sample_edge_line_logits time: {(time.time() - start) * 1000:.2f}ms") | |
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8) | |
# cv2.imwrite("edge_pred.jpg", np_edge_pred) | |
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8) | |
# cv2.imwrite("line_pred.jpg", np_line_pred) | |
# exit() | |
input_size = min(items["h"], items["w"]) | |
if input_size != 256 and input_size > 256: | |
while edge_pred.shape[2] < input_size: | |
edge_pred = self.structure_upsample(edge_pred) | |
edge_pred = torch.sigmoid((edge_pred + 2) * 2) | |
line_pred = self.structure_upsample(line_pred) | |
line_pred = torch.sigmoid((line_pred + 2) * 2) | |
edge_pred = F.interpolate( | |
edge_pred, | |
size=(input_size, input_size), | |
mode="bilinear", | |
align_corners=False, | |
) | |
line_pred = F.interpolate( | |
line_pred, | |
size=(input_size, input_size), | |
mode="bilinear", | |
align_corners=False, | |
) | |
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8) | |
# cv2.imwrite("edge_pred_upsample.jpg", np_edge_pred) | |
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8) | |
# cv2.imwrite("line_pred_upsample.jpg", np_line_pred) | |
# exit() | |
items["edge"] = edge_pred.detach() | |
items["line"] = line_pred.detach() | |
def forward(self, image, mask, config: Config): | |
"""Input images and output images have same size | |
images: [H, W, C] RGB | |
masks: [H, W] | |
return: BGR IMAGE | |
""" | |
mask = mask[:, :, 0] | |
items = load_image(image, mask, device=self.device) | |
self.wireframe_edge_and_line(items, config.zits_wireframe) | |
inpainted_image = self.inpaint( | |
items["images"], | |
items["masks"], | |
items["edge"], | |
items["line"], | |
items["rel_pos"], | |
items["direct"], | |
) | |
inpainted_image = inpainted_image * 255.0 | |
inpainted_image = ( | |
inpainted_image.cpu().permute(0, 2, 3, 1)[0].numpy().astype(np.uint8) | |
) | |
inpainted_image = inpainted_image[:, :, ::-1] | |
# cv2.imwrite("inpainted.jpg", inpainted_image) | |
# exit() | |
return inpainted_image | |
def wireframe_forward(self, images, h, w, masks, mask_th=0.925): | |
lcnn_mean = torch.tensor([109.730, 103.832, 98.681]).reshape(1, 3, 1, 1) | |
lcnn_std = torch.tensor([22.275, 22.124, 23.229]).reshape(1, 3, 1, 1) | |
images = images * 255.0 | |
# the masks value of lcnn is 127.5 | |
masked_images = images * (1 - masks) + torch.ones_like(images) * masks * 127.5 | |
masked_images = (masked_images - lcnn_mean) / lcnn_std | |
def to_int(x): | |
return tuple(map(int, x)) | |
lines_tensor = [] | |
lmap = np.zeros((h, w)) | |
output_masked = self.wireframe(masked_images) | |
output_masked = to_device(output_masked, "cpu") | |
if output_masked["num_proposals"] == 0: | |
lines_masked = [] | |
scores_masked = [] | |
else: | |
lines_masked = output_masked["lines_pred"].numpy() | |
lines_masked = [ | |
[line[1] * h, line[0] * w, line[3] * h, line[2] * w] | |
for line in lines_masked | |
] | |
scores_masked = output_masked["lines_score"].numpy() | |
for line, score in zip(lines_masked, scores_masked): | |
if score > mask_th: | |
try: | |
import skimage | |
rr, cc, value = skimage.draw.line_aa( | |
*to_int(line[0:2]), *to_int(line[2:4]) | |
) | |
lmap[rr, cc] = np.maximum(lmap[rr, cc], value) | |
except: | |
cv2.line(lmap, to_int(line[0:2][::-1]), to_int(line[2:4][::-1]), (1, 1, 1), 1, cv2.LINE_AA) | |
lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8) | |
lines_tensor.append(to_tensor(lmap).unsqueeze(0)) | |
lines_tensor = torch.cat(lines_tensor, dim=0) | |
return lines_tensor.detach().to(self.device) | |
def sample_edge_line_logits( | |
self, context, mask=None, iterations=1, add_v=0, mul_v=4 | |
): | |
[img, edge, line] = context | |
img = img * (1 - mask) | |
edge = edge * (1 - mask) | |
line = line * (1 - mask) | |
for i in range(iterations): | |
edge_logits, line_logits = self.edge_line(img, edge, line, masks=mask) | |
edge_pred = torch.sigmoid(edge_logits) | |
line_pred = torch.sigmoid((line_logits + add_v) * mul_v) | |
edge = edge + edge_pred * mask | |
edge[edge >= 0.25] = 1 | |
edge[edge < 0.25] = 0 | |
line = line + line_pred * mask | |
b, _, h, w = edge_pred.shape | |
edge_pred = edge_pred.reshape(b, -1, 1) | |
line_pred = line_pred.reshape(b, -1, 1) | |
mask = mask.reshape(b, -1) | |
edge_probs = torch.cat([1 - edge_pred, edge_pred], dim=-1) | |
line_probs = torch.cat([1 - line_pred, line_pred], dim=-1) | |
edge_probs[:, :, 1] += 0.5 | |
line_probs[:, :, 1] += 0.5 | |
edge_max_probs = edge_probs.max(dim=-1)[0] + (1 - mask) * (-100) | |
line_max_probs = line_probs.max(dim=-1)[0] + (1 - mask) * (-100) | |
indices = torch.sort( | |
edge_max_probs + line_max_probs, dim=-1, descending=True | |
)[1] | |
for ii in range(b): | |
keep = int((i + 1) / iterations * torch.sum(mask[ii, ...])) | |
assert torch.sum(mask[ii][indices[ii, :keep]]) == keep, "Error!!!" | |
mask[ii][indices[ii, :keep]] = 0 | |
mask = mask.reshape(b, 1, h, w) | |
edge = edge * (1 - mask) | |
line = line * (1 - mask) | |
edge, line = edge.to(torch.float32), line.to(torch.float32) | |
return edge, line | |