Spaces:
Sleeping
Sleeping
import os | |
import random | |
import cv2 | |
import torch | |
import numpy as np | |
import torch.fft as fft | |
from lama_cleaner.schema import Config | |
from lama_cleaner.helper import ( | |
load_model, | |
get_cache_path_by_url, | |
norm_img, | |
boxes_from_mask, | |
resize_max_size, | |
) | |
from lama_cleaner.model.base import InpaintModel | |
from torch import conv2d, nn | |
import torch.nn.functional as F | |
from lama_cleaner.model.utils import ( | |
setup_filter, | |
_parse_scaling, | |
_parse_padding, | |
Conv2dLayer, | |
FullyConnectedLayer, | |
MinibatchStdLayer, | |
activation_funcs, | |
conv2d_resample, | |
bias_act, | |
upsample2d, | |
normalize_2nd_moment, | |
downsample2d, | |
) | |
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"): | |
assert isinstance(x, torch.Tensor) | |
return _upfirdn2d_ref( | |
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain | |
) | |
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): | |
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.""" | |
# Validate arguments. | |
assert isinstance(x, torch.Tensor) and x.ndim == 4 | |
if f is None: | |
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) | |
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] | |
assert f.dtype == torch.float32 and not f.requires_grad | |
batch_size, num_channels, in_height, in_width = x.shape | |
upx, upy = _parse_scaling(up) | |
downx, downy = _parse_scaling(down) | |
padx0, padx1, pady0, pady1 = _parse_padding(padding) | |
# Upsample by inserting zeros. | |
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) | |
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) | |
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) | |
# Pad or crop. | |
x = torch.nn.functional.pad( | |
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)] | |
) | |
x = x[ | |
:, | |
:, | |
max(-pady0, 0) : x.shape[2] - max(-pady1, 0), | |
max(-padx0, 0) : x.shape[3] - max(-padx1, 0), | |
] | |
# Setup filter. | |
f = f * (gain ** (f.ndim / 2)) | |
f = f.to(x.dtype) | |
if not flip_filter: | |
f = f.flip(list(range(f.ndim))) | |
# Convolve with the filter. | |
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) | |
if f.ndim == 4: | |
x = conv2d(input=x, weight=f, groups=num_channels) | |
else: | |
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels) | |
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels) | |
# Downsample by throwing away pixels. | |
x = x[:, :, ::downy, ::downx] | |
return x | |
class EncoderEpilogue(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels. | |
cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label. | |
z_dim, # Output Latent (Z) dimensionality. | |
resolution, # Resolution of this block. | |
img_channels, # Number of input color channels. | |
architecture="resnet", # Architecture: 'orig', 'skip', 'resnet'. | |
mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch. | |
mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable. | |
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
): | |
assert architecture in ["orig", "skip", "resnet"] | |
super().__init__() | |
self.in_channels = in_channels | |
self.cmap_dim = cmap_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.architecture = architecture | |
if architecture == "skip": | |
self.fromrgb = Conv2dLayer( | |
self.img_channels, in_channels, kernel_size=1, activation=activation | |
) | |
self.mbstd = ( | |
MinibatchStdLayer( | |
group_size=mbstd_group_size, num_channels=mbstd_num_channels | |
) | |
if mbstd_num_channels > 0 | |
else None | |
) | |
self.conv = Conv2dLayer( | |
in_channels + mbstd_num_channels, | |
in_channels, | |
kernel_size=3, | |
activation=activation, | |
conv_clamp=conv_clamp, | |
) | |
self.fc = FullyConnectedLayer( | |
in_channels * (resolution**2), z_dim, activation=activation | |
) | |
self.dropout = torch.nn.Dropout(p=0.5) | |
def forward(self, x, cmap, force_fp32=False): | |
_ = force_fp32 # unused | |
dtype = torch.float32 | |
memory_format = torch.contiguous_format | |
# FromRGB. | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.mbstd is not None: | |
x = self.mbstd(x) | |
const_e = self.conv(x) | |
x = self.fc(const_e.flatten(1)) | |
x = self.dropout(x) | |
# Conditioning. | |
if self.cmap_dim > 0: | |
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) | |
assert x.dtype == dtype | |
return x, const_e | |
class EncoderBlock(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels, 0 = first block. | |
tmp_channels, # Number of intermediate channels. | |
out_channels, # Number of output channels. | |
resolution, # Resolution of this block. | |
img_channels, # Number of input color channels. | |
first_layer_idx, # Index of the first layer. | |
architecture="skip", # Architecture: 'orig', 'skip', 'resnet'. | |
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. | |
resample_filter=[ | |
1, | |
3, | |
3, | |
1, | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16=False, # Use FP16 for this block? | |
fp16_channels_last=False, # Use channels-last memory format with FP16? | |
freeze_layers=0, # Freeze-D: Number of layers to freeze. | |
): | |
assert in_channels in [0, tmp_channels] | |
assert architecture in ["orig", "skip", "resnet"] | |
super().__init__() | |
self.in_channels = in_channels | |
self.resolution = resolution | |
self.img_channels = img_channels + 1 | |
self.first_layer_idx = first_layer_idx | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = use_fp16 and fp16_channels_last | |
self.register_buffer("resample_filter", setup_filter(resample_filter)) | |
self.num_layers = 0 | |
def trainable_gen(): | |
while True: | |
layer_idx = self.first_layer_idx + self.num_layers | |
trainable = layer_idx >= freeze_layers | |
self.num_layers += 1 | |
yield trainable | |
trainable_iter = trainable_gen() | |
if in_channels == 0: | |
self.fromrgb = Conv2dLayer( | |
self.img_channels, | |
tmp_channels, | |
kernel_size=1, | |
activation=activation, | |
trainable=next(trainable_iter), | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
) | |
self.conv0 = Conv2dLayer( | |
tmp_channels, | |
tmp_channels, | |
kernel_size=3, | |
activation=activation, | |
trainable=next(trainable_iter), | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
) | |
self.conv1 = Conv2dLayer( | |
tmp_channels, | |
out_channels, | |
kernel_size=3, | |
activation=activation, | |
down=2, | |
trainable=next(trainable_iter), | |
resample_filter=resample_filter, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
) | |
if architecture == "resnet": | |
self.skip = Conv2dLayer( | |
tmp_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False, | |
down=2, | |
trainable=next(trainable_iter), | |
resample_filter=resample_filter, | |
channels_last=self.channels_last, | |
) | |
def forward(self, x, img, force_fp32=False): | |
# dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
dtype = torch.float32 | |
memory_format = ( | |
torch.channels_last | |
if self.channels_last and not force_fp32 | |
else torch.contiguous_format | |
) | |
# Input. | |
if x is not None: | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# FromRGB. | |
if self.in_channels == 0: | |
img = img.to(dtype=dtype, memory_format=memory_format) | |
y = self.fromrgb(img) | |
x = x + y if x is not None else y | |
img = ( | |
downsample2d(img, self.resample_filter) | |
if self.architecture == "skip" | |
else None | |
) | |
# Main layers. | |
if self.architecture == "resnet": | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x) | |
feat = x.clone() | |
x = self.conv1(x, gain=np.sqrt(0.5)) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x) | |
feat = x.clone() | |
x = self.conv1(x) | |
assert x.dtype == dtype | |
return x, img, feat | |
class EncoderNetwork(torch.nn.Module): | |
def __init__( | |
self, | |
c_dim, # Conditioning label (C) dimensionality. | |
z_dim, # Input latent (Z) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
architecture="orig", # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base=16384, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=0, # Use FP16 for the N highest resolutions. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default. | |
block_kwargs={}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
epilogue_kwargs={}, # Arguments for EncoderEpilogue. | |
): | |
super().__init__() | |
self.c_dim = c_dim | |
self.z_dim = z_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [ | |
2**i for i in range(self.img_resolution_log2, 2, -1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) | |
for res in self.block_resolutions + [4] | |
} | |
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict( | |
img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp | |
) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = res >= fp16_resolution | |
use_fp16 = False | |
block = EncoderBlock( | |
in_channels, | |
tmp_channels, | |
out_channels, | |
resolution=res, | |
first_layer_idx=cur_layer_idx, | |
use_fp16=use_fp16, | |
**block_kwargs, | |
**common_kwargs, | |
) | |
setattr(self, f"b{res}", block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork( | |
z_dim=0, | |
c_dim=c_dim, | |
w_dim=cmap_dim, | |
num_ws=None, | |
w_avg_beta=None, | |
**mapping_kwargs, | |
) | |
self.b4 = EncoderEpilogue( | |
channels_dict[4], | |
cmap_dim=cmap_dim, | |
z_dim=z_dim * 2, | |
resolution=4, | |
**epilogue_kwargs, | |
**common_kwargs, | |
) | |
def forward(self, img, c, **block_kwargs): | |
x = None | |
feats = {} | |
for res in self.block_resolutions: | |
block = getattr(self, f"b{res}") | |
x, img, feat = block(x, img, **block_kwargs) | |
feats[res] = feat | |
cmap = None | |
if self.c_dim > 0: | |
cmap = self.mapping(None, c) | |
x, const_e = self.b4(x, cmap) | |
feats[4] = const_e | |
B, _ = x.shape | |
z = torch.zeros( | |
(B, self.z_dim), requires_grad=False, dtype=x.dtype, device=x.device | |
) ## Noise for Co-Modulation | |
return x, z, feats | |
def fma(a, b, c): # => a * b + c | |
return _FusedMultiplyAdd.apply(a, b, c) | |
class _FusedMultiplyAdd(torch.autograd.Function): # a * b + c | |
def forward(ctx, a, b, c): # pylint: disable=arguments-differ | |
out = torch.addcmul(c, a, b) | |
ctx.save_for_backward(a, b) | |
ctx.c_shape = c.shape | |
return out | |
def backward(ctx, dout): # pylint: disable=arguments-differ | |
a, b = ctx.saved_tensors | |
c_shape = ctx.c_shape | |
da = None | |
db = None | |
dc = None | |
if ctx.needs_input_grad[0]: | |
da = _unbroadcast(dout * b, a.shape) | |
if ctx.needs_input_grad[1]: | |
db = _unbroadcast(dout * a, b.shape) | |
if ctx.needs_input_grad[2]: | |
dc = _unbroadcast(dout, c_shape) | |
return da, db, dc | |
def _unbroadcast(x, shape): | |
extra_dims = x.ndim - len(shape) | |
assert extra_dims >= 0 | |
dim = [ | |
i | |
for i in range(x.ndim) | |
if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1) | |
] | |
if len(dim): | |
x = x.sum(dim=dim, keepdim=True) | |
if extra_dims: | |
x = x.reshape(-1, *x.shape[extra_dims + 1 :]) | |
assert x.shape == shape | |
return x | |
def modulated_conv2d( | |
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. | |
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. | |
styles, # Modulation coefficients of shape [batch_size, in_channels]. | |
noise=None, # Optional noise tensor to add to the output activations. | |
up=1, # Integer upsampling factor. | |
down=1, # Integer downsampling factor. | |
padding=0, # Padding with respect to the upsampled image. | |
resample_filter=None, | |
# Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). | |
demodulate=True, # Apply weight demodulation? | |
flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d). | |
fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation? | |
): | |
batch_size = x.shape[0] | |
out_channels, in_channels, kh, kw = weight.shape | |
# Pre-normalize inputs to avoid FP16 overflow. | |
if x.dtype == torch.float16 and demodulate: | |
weight = weight * ( | |
1 | |
/ np.sqrt(in_channels * kh * kw) | |
/ weight.norm(float("inf"), dim=[1, 2, 3], keepdim=True) | |
) # max_Ikk | |
styles = styles / styles.norm(float("inf"), dim=1, keepdim=True) # max_I | |
# Calculate per-sample weights and demodulation coefficients. | |
w = None | |
dcoefs = None | |
if demodulate or fused_modconv: | |
w = weight.unsqueeze(0) # [NOIkk] | |
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk] | |
if demodulate: | |
dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO] | |
if demodulate and fused_modconv: | |
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk] | |
# Execute by scaling the activations before and after the convolution. | |
if not fused_modconv: | |
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) | |
x = conv2d_resample.conv2d_resample( | |
x=x, | |
w=weight.to(x.dtype), | |
f=resample_filter, | |
up=up, | |
down=down, | |
padding=padding, | |
flip_weight=flip_weight, | |
) | |
if demodulate and noise is not None: | |
x = fma( | |
x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype) | |
) | |
elif demodulate: | |
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) | |
elif noise is not None: | |
x = x.add_(noise.to(x.dtype)) | |
return x | |
# Execute as one fused op using grouped convolution. | |
batch_size = int(batch_size) | |
x = x.reshape(1, -1, *x.shape[2:]) | |
w = w.reshape(-1, in_channels, kh, kw) | |
x = conv2d_resample( | |
x=x, | |
w=w.to(x.dtype), | |
f=resample_filter, | |
up=up, | |
down=down, | |
padding=padding, | |
groups=batch_size, | |
flip_weight=flip_weight, | |
) | |
x = x.reshape(batch_size, -1, *x.shape[2:]) | |
if noise is not None: | |
x = x.add_(noise) | |
return x | |
class SynthesisLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this layer. | |
kernel_size=3, # Convolution kernel size. | |
up=1, # Integer upsampling factor. | |
use_noise=True, # Enable noise input? | |
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. | |
resample_filter=[ | |
1, | |
3, | |
3, | |
1, | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
channels_last=False, # Use channels_last format for the weights? | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.up = up | |
self.use_noise = use_noise | |
self.activation = activation | |
self.conv_clamp = conv_clamp | |
self.register_buffer("resample_filter", setup_filter(resample_filter)) | |
self.padding = kernel_size // 2 | |
self.act_gain = activation_funcs[activation].def_gain | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = ( | |
torch.channels_last if channels_last else torch.contiguous_format | |
) | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to( | |
memory_format=memory_format | |
) | |
) | |
if use_noise: | |
self.register_buffer("noise_const", torch.randn([resolution, resolution])) | |
self.noise_strength = torch.nn.Parameter(torch.zeros([])) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
def forward(self, x, w, noise_mode="none", fused_modconv=True, gain=1): | |
assert noise_mode in ["random", "const", "none"] | |
in_resolution = self.resolution // self.up | |
styles = self.affine(w) | |
noise = None | |
if self.use_noise and noise_mode == "random": | |
noise = ( | |
torch.randn( | |
[x.shape[0], 1, self.resolution, self.resolution], device=x.device | |
) | |
* self.noise_strength | |
) | |
if self.use_noise and noise_mode == "const": | |
noise = self.noise_const * self.noise_strength | |
flip_weight = self.up == 1 # slightly faster | |
x = modulated_conv2d( | |
x=x, | |
weight=self.weight, | |
styles=styles, | |
noise=noise, | |
up=self.up, | |
padding=self.padding, | |
resample_filter=self.resample_filter, | |
flip_weight=flip_weight, | |
fused_modconv=fused_modconv, | |
) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = F.leaky_relu(x, negative_slope=0.2, inplace=False) | |
if act_gain != 1: | |
x = x * act_gain | |
if act_clamp is not None: | |
x = x.clamp(-act_clamp, act_clamp) | |
return x | |
class ToRGBLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
w_dim, | |
kernel_size=1, | |
conv_clamp=None, | |
channels_last=False, | |
): | |
super().__init__() | |
self.conv_clamp = conv_clamp | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = ( | |
torch.channels_last if channels_last else torch.contiguous_format | |
) | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to( | |
memory_format=memory_format | |
) | |
) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) | |
def forward(self, x, w, fused_modconv=True): | |
styles = self.affine(w) * self.weight_gain | |
x = modulated_conv2d( | |
x=x, | |
weight=self.weight, | |
styles=styles, | |
demodulate=False, | |
fused_modconv=fused_modconv, | |
) | |
x = bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp) | |
return x | |
class SynthesisForeword(torch.nn.Module): | |
def __init__( | |
self, | |
z_dim, # Output Latent (Z) dimensionality. | |
resolution, # Resolution of this block. | |
in_channels, | |
img_channels, # Number of input color channels. | |
architecture="skip", # Architecture: 'orig', 'skip', 'resnet'. | |
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.z_dim = z_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.architecture = architecture | |
self.fc = FullyConnectedLayer( | |
self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation | |
) | |
self.conv = SynthesisLayer( | |
self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4 | |
) | |
if architecture == "skip": | |
self.torgb = ToRGBLayer( | |
self.in_channels, | |
self.img_channels, | |
kernel_size=1, | |
w_dim=(z_dim // 2) * 3, | |
) | |
def forward(self, x, ws, feats, img, force_fp32=False): | |
_ = force_fp32 # unused | |
dtype = torch.float32 | |
memory_format = torch.contiguous_format | |
x_global = x.clone() | |
# ToRGB. | |
x = self.fc(x) | |
x = x.view(-1, self.z_dim // 2, 4, 4) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
x_skip = feats[4].clone() | |
x = x + x_skip | |
mod_vector = [] | |
mod_vector.append(ws[:, 0]) | |
mod_vector.append(x_global.clone()) | |
mod_vector = torch.cat(mod_vector, dim=1) | |
x = self.conv(x, mod_vector) | |
mod_vector = [] | |
mod_vector.append(ws[:, 2 * 2 - 3]) | |
mod_vector.append(x_global.clone()) | |
mod_vector = torch.cat(mod_vector, dim=1) | |
if self.architecture == "skip": | |
img = self.torgb(x, mod_vector) | |
img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
assert x.dtype == dtype | |
return x, img | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(SELayer, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction, bias=False), | |
nn.ReLU(inplace=False), | |
nn.Linear(channel // reduction, channel, bias=False), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
res = x * y.expand_as(x) | |
return res | |
class FourierUnit(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
groups=1, | |
spatial_scale_factor=None, | |
spatial_scale_mode="bilinear", | |
spectral_pos_encoding=False, | |
use_se=False, | |
se_kwargs=None, | |
ffc3d=False, | |
fft_norm="ortho", | |
): | |
# bn_layer not used | |
super(FourierUnit, self).__init__() | |
self.groups = groups | |
self.conv_layer = torch.nn.Conv2d( | |
in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), | |
out_channels=out_channels * 2, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=self.groups, | |
bias=False, | |
) | |
self.relu = torch.nn.ReLU(inplace=False) | |
# squeeze and excitation block | |
self.use_se = use_se | |
if use_se: | |
if se_kwargs is None: | |
se_kwargs = {} | |
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) | |
self.spatial_scale_factor = spatial_scale_factor | |
self.spatial_scale_mode = spatial_scale_mode | |
self.spectral_pos_encoding = spectral_pos_encoding | |
self.ffc3d = ffc3d | |
self.fft_norm = fft_norm | |
def forward(self, x): | |
batch = x.shape[0] | |
if self.spatial_scale_factor is not None: | |
orig_size = x.shape[-2:] | |
x = F.interpolate( | |
x, | |
scale_factor=self.spatial_scale_factor, | |
mode=self.spatial_scale_mode, | |
align_corners=False, | |
) | |
r_size = x.size() | |
# (batch, c, h, w/2+1, 2) | |
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) | |
ffted = fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) | |
ffted = torch.stack((ffted.real, ffted.imag), dim=-1) | |
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) | |
ffted = ffted.view( | |
( | |
batch, | |
-1, | |
) | |
+ ffted.size()[3:] | |
) | |
if self.spectral_pos_encoding: | |
height, width = ffted.shape[-2:] | |
coords_vert = ( | |
torch.linspace(0, 1, height)[None, None, :, None] | |
.expand(batch, 1, height, width) | |
.to(ffted) | |
) | |
coords_hor = ( | |
torch.linspace(0, 1, width)[None, None, None, :] | |
.expand(batch, 1, height, width) | |
.to(ffted) | |
) | |
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) | |
if self.use_se: | |
ffted = self.se(ffted) | |
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1) | |
ffted = self.relu(ffted) | |
ffted = ( | |
ffted.view( | |
( | |
batch, | |
-1, | |
2, | |
) | |
+ ffted.size()[2:] | |
) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) # (batch,c, t, h, w/2+1, 2) | |
ffted = torch.complex(ffted[..., 0], ffted[..., 1]) | |
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] | |
output = torch.fft.irfftn( | |
ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm | |
) | |
if self.spatial_scale_factor is not None: | |
output = F.interpolate( | |
output, | |
size=orig_size, | |
mode=self.spatial_scale_mode, | |
align_corners=False, | |
) | |
return output | |
class SpectralTransform(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
stride=1, | |
groups=1, | |
enable_lfu=True, | |
**fu_kwargs, | |
): | |
# bn_layer not used | |
super(SpectralTransform, self).__init__() | |
self.enable_lfu = enable_lfu | |
if stride == 2: | |
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) | |
else: | |
self.downsample = nn.Identity() | |
self.stride = stride | |
self.conv1 = nn.Sequential( | |
nn.Conv2d( | |
in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False | |
), | |
# nn.BatchNorm2d(out_channels // 2), | |
nn.ReLU(inplace=True), | |
) | |
self.fu = FourierUnit(out_channels // 2, out_channels // 2, groups, **fu_kwargs) | |
if self.enable_lfu: | |
self.lfu = FourierUnit(out_channels // 2, out_channels // 2, groups) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False | |
) | |
def forward(self, x): | |
x = self.downsample(x) | |
x = self.conv1(x) | |
output = self.fu(x) | |
if self.enable_lfu: | |
n, c, h, w = x.shape | |
split_no = 2 | |
split_s = h // split_no | |
xs = torch.cat( | |
torch.split(x[:, : c // 4], split_s, dim=-2), dim=1 | |
).contiguous() | |
xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous() | |
xs = self.lfu(xs) | |
xs = xs.repeat(1, 1, split_no, split_no).contiguous() | |
else: | |
xs = 0 | |
output = self.conv2(x + output + xs) | |
return output | |
class FFC(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
ratio_gin, | |
ratio_gout, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=False, | |
enable_lfu=True, | |
padding_type="reflect", | |
gated=False, | |
**spectral_kwargs, | |
): | |
super(FFC, self).__init__() | |
assert stride == 1 or stride == 2, "Stride should be 1 or 2." | |
self.stride = stride | |
in_cg = int(in_channels * ratio_gin) | |
in_cl = in_channels - in_cg | |
out_cg = int(out_channels * ratio_gout) | |
out_cl = out_channels - out_cg | |
# groups_g = 1 if groups == 1 else int(groups * ratio_gout) | |
# groups_l = 1 if groups == 1 else groups - groups_g | |
self.ratio_gin = ratio_gin | |
self.ratio_gout = ratio_gout | |
self.global_in_num = in_cg | |
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d | |
self.convl2l = module( | |
in_cl, | |
out_cl, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
padding_mode=padding_type, | |
) | |
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d | |
self.convl2g = module( | |
in_cl, | |
out_cg, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
padding_mode=padding_type, | |
) | |
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d | |
self.convg2l = module( | |
in_cg, | |
out_cl, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
padding_mode=padding_type, | |
) | |
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform | |
self.convg2g = module( | |
in_cg, | |
out_cg, | |
stride, | |
1 if groups == 1 else groups // 2, | |
enable_lfu, | |
**spectral_kwargs, | |
) | |
self.gated = gated | |
module = ( | |
nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d | |
) | |
self.gate = module(in_channels, 2, 1) | |
def forward(self, x, fname=None): | |
x_l, x_g = x if type(x) is tuple else (x, 0) | |
out_xl, out_xg = 0, 0 | |
if self.gated: | |
total_input_parts = [x_l] | |
if torch.is_tensor(x_g): | |
total_input_parts.append(x_g) | |
total_input = torch.cat(total_input_parts, dim=1) | |
gates = torch.sigmoid(self.gate(total_input)) | |
g2l_gate, l2g_gate = gates.chunk(2, dim=1) | |
else: | |
g2l_gate, l2g_gate = 1, 1 | |
spec_x = self.convg2g(x_g) | |
if self.ratio_gout != 1: | |
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate | |
if self.ratio_gout != 0: | |
out_xg = self.convl2g(x_l) * l2g_gate + spec_x | |
return out_xl, out_xg | |
class FFC_BN_ACT(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
ratio_gin, | |
ratio_gout, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=False, | |
norm_layer=nn.SyncBatchNorm, | |
activation_layer=nn.Identity, | |
padding_type="reflect", | |
enable_lfu=True, | |
**kwargs, | |
): | |
super(FFC_BN_ACT, self).__init__() | |
self.ffc = FFC( | |
in_channels, | |
out_channels, | |
kernel_size, | |
ratio_gin, | |
ratio_gout, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
enable_lfu, | |
padding_type=padding_type, | |
**kwargs, | |
) | |
lnorm = nn.Identity if ratio_gout == 1 else norm_layer | |
gnorm = nn.Identity if ratio_gout == 0 else norm_layer | |
global_channels = int(out_channels * ratio_gout) | |
# self.bn_l = lnorm(out_channels - global_channels) | |
# self.bn_g = gnorm(global_channels) | |
lact = nn.Identity if ratio_gout == 1 else activation_layer | |
gact = nn.Identity if ratio_gout == 0 else activation_layer | |
self.act_l = lact(inplace=True) | |
self.act_g = gact(inplace=True) | |
def forward(self, x, fname=None): | |
x_l, x_g = self.ffc( | |
x, | |
fname=fname, | |
) | |
x_l = self.act_l(x_l) | |
x_g = self.act_g(x_g) | |
return x_l, x_g | |
class FFCResnetBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
padding_type, | |
norm_layer, | |
activation_layer=nn.ReLU, | |
dilation=1, | |
spatial_transform_kwargs=None, | |
inline=False, | |
ratio_gin=0.75, | |
ratio_gout=0.75, | |
): | |
super().__init__() | |
self.conv1 = FFC_BN_ACT( | |
dim, | |
dim, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation, | |
norm_layer=norm_layer, | |
activation_layer=activation_layer, | |
padding_type=padding_type, | |
ratio_gin=ratio_gin, | |
ratio_gout=ratio_gout, | |
) | |
self.conv2 = FFC_BN_ACT( | |
dim, | |
dim, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation, | |
norm_layer=norm_layer, | |
activation_layer=activation_layer, | |
padding_type=padding_type, | |
ratio_gin=ratio_gin, | |
ratio_gout=ratio_gout, | |
) | |
self.inline = inline | |
def forward(self, x, fname=None): | |
if self.inline: | |
x_l, x_g = ( | |
x[:, : -self.conv1.ffc.global_in_num], | |
x[:, -self.conv1.ffc.global_in_num :], | |
) | |
else: | |
x_l, x_g = x if type(x) is tuple else (x, 0) | |
id_l, id_g = x_l, x_g | |
x_l, x_g = self.conv1((x_l, x_g), fname=fname) | |
x_l, x_g = self.conv2((x_l, x_g), fname=fname) | |
x_l, x_g = id_l + x_l, id_g + x_g | |
out = x_l, x_g | |
if self.inline: | |
out = torch.cat(out, dim=1) | |
return out | |
class ConcatTupleLayer(nn.Module): | |
def forward(self, x): | |
assert isinstance(x, tuple) | |
x_l, x_g = x | |
assert torch.is_tensor(x_l) or torch.is_tensor(x_g) | |
if not torch.is_tensor(x_g): | |
return x_l | |
return torch.cat(x, dim=1) | |
class FFCBlock(torch.nn.Module): | |
def __init__( | |
self, | |
dim, # Number of output/input channels. | |
kernel_size, # Width and height of the convolution kernel. | |
padding, | |
ratio_gin=0.75, | |
ratio_gout=0.75, | |
activation="linear", # Activation function: 'relu', 'lrelu', etc. | |
): | |
super().__init__() | |
if activation == "linear": | |
self.activation = nn.Identity | |
else: | |
self.activation = nn.ReLU | |
self.padding = padding | |
self.kernel_size = kernel_size | |
self.ffc_block = FFCResnetBlock( | |
dim=dim, | |
padding_type="reflect", | |
norm_layer=nn.SyncBatchNorm, | |
activation_layer=self.activation, | |
dilation=1, | |
ratio_gin=ratio_gin, | |
ratio_gout=ratio_gout, | |
) | |
self.concat_layer = ConcatTupleLayer() | |
def forward(self, gen_ft, mask, fname=None): | |
x = gen_ft.float() | |
x_l, x_g = ( | |
x[:, : -self.ffc_block.conv1.ffc.global_in_num], | |
x[:, -self.ffc_block.conv1.ffc.global_in_num :], | |
) | |
id_l, id_g = x_l, x_g | |
x_l, x_g = self.ffc_block((x_l, x_g), fname=fname) | |
x_l, x_g = id_l + x_l, id_g + x_g | |
x = self.concat_layer((x_l, x_g)) | |
return x + gen_ft.float() | |
class FFCSkipLayer(torch.nn.Module): | |
def __init__( | |
self, | |
dim, # Number of input/output channels. | |
kernel_size=3, # Convolution kernel size. | |
ratio_gin=0.75, | |
ratio_gout=0.75, | |
): | |
super().__init__() | |
self.padding = kernel_size // 2 | |
self.ffc_act = FFCBlock( | |
dim=dim, | |
kernel_size=kernel_size, | |
activation=nn.ReLU, | |
padding=self.padding, | |
ratio_gin=ratio_gin, | |
ratio_gout=ratio_gout, | |
) | |
def forward(self, gen_ft, mask, fname=None): | |
x = self.ffc_act(gen_ft, mask, fname=fname) | |
return x | |
class SynthesisBlock(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels, 0 = first block. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this block. | |
img_channels, # Number of output color channels. | |
is_last, # Is this the last block? | |
architecture="skip", # Architecture: 'orig', 'skip', 'resnet'. | |
resample_filter=[ | |
1, | |
3, | |
3, | |
1, | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16=False, # Use FP16 for this block? | |
fp16_channels_last=False, # Use channels-last memory format with FP16? | |
**layer_kwargs, # Arguments for SynthesisLayer. | |
): | |
assert architecture in ["orig", "skip", "resnet"] | |
super().__init__() | |
self.in_channels = in_channels | |
self.w_dim = w_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.is_last = is_last | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = use_fp16 and fp16_channels_last | |
self.register_buffer("resample_filter", setup_filter(resample_filter)) | |
self.num_conv = 0 | |
self.num_torgb = 0 | |
self.res_ffc = {4: 0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1} | |
if in_channels != 0 and resolution >= 8: | |
self.ffc_skip = nn.ModuleList() | |
for _ in range(self.res_ffc[resolution]): | |
self.ffc_skip.append(FFCSkipLayer(dim=out_channels)) | |
if in_channels == 0: | |
self.const = torch.nn.Parameter( | |
torch.randn([out_channels, resolution, resolution]) | |
) | |
if in_channels != 0: | |
self.conv0 = SynthesisLayer( | |
in_channels, | |
out_channels, | |
w_dim=w_dim * 3, | |
resolution=resolution, | |
up=2, | |
resample_filter=resample_filter, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
**layer_kwargs, | |
) | |
self.num_conv += 1 | |
self.conv1 = SynthesisLayer( | |
out_channels, | |
out_channels, | |
w_dim=w_dim * 3, | |
resolution=resolution, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
**layer_kwargs, | |
) | |
self.num_conv += 1 | |
if is_last or architecture == "skip": | |
self.torgb = ToRGBLayer( | |
out_channels, | |
img_channels, | |
w_dim=w_dim * 3, | |
conv_clamp=conv_clamp, | |
channels_last=self.channels_last, | |
) | |
self.num_torgb += 1 | |
if in_channels != 0 and architecture == "resnet": | |
self.skip = Conv2dLayer( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False, | |
up=2, | |
resample_filter=resample_filter, | |
channels_last=self.channels_last, | |
) | |
def forward( | |
self, | |
x, | |
mask, | |
feats, | |
img, | |
ws, | |
fname=None, | |
force_fp32=False, | |
fused_modconv=None, | |
**layer_kwargs, | |
): | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
dtype = torch.float32 | |
memory_format = ( | |
torch.channels_last | |
if self.channels_last and not force_fp32 | |
else torch.contiguous_format | |
) | |
if fused_modconv is None: | |
fused_modconv = (not self.training) and ( | |
dtype == torch.float32 or int(x.shape[0]) == 1 | |
) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
x_skip = ( | |
feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format) | |
) | |
# Main layers. | |
if self.in_channels == 0: | |
x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == "resnet": | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0( | |
x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs | |
) | |
if len(self.ffc_skip) > 0: | |
mask = F.interpolate( | |
mask, | |
size=x_skip.shape[2:], | |
) | |
z = x + x_skip | |
for fres in self.ffc_skip: | |
z = fres(z, mask) | |
x = x + z | |
else: | |
x = x + x_skip | |
x = self.conv1( | |
x, | |
ws[1].clone(), | |
fused_modconv=fused_modconv, | |
gain=np.sqrt(0.5), | |
**layer_kwargs, | |
) | |
x = y.add_(x) | |
else: | |
x = self.conv0( | |
x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs | |
) | |
if len(self.ffc_skip) > 0: | |
mask = F.interpolate( | |
mask, | |
size=x_skip.shape[2:], | |
) | |
z = x + x_skip | |
for fres in self.ffc_skip: | |
z = fres(z, mask) | |
x = x + z | |
else: | |
x = x + x_skip | |
x = self.conv1( | |
x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs | |
) | |
# ToRGB. | |
if img is not None: | |
img = upsample2d(img, self.resample_filter) | |
if self.is_last or self.architecture == "skip": | |
y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
x = x.to(dtype=dtype) | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
class SynthesisNetwork(torch.nn.Module): | |
def __init__( | |
self, | |
w_dim, # Intermediate latent (W) dimensionality. | |
z_dim, # Output Latent (Z) dimensionality. | |
img_resolution, # Output image resolution. | |
img_channels, # Number of color channels. | |
channel_base=16384, # Overall multiplier for the number of channels. | |
channel_max=512, # Maximum number of channels in any layer. | |
num_fp16_res=0, # Use FP16 for the N highest resolutions. | |
**block_kwargs, # Arguments for SynthesisBlock. | |
): | |
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0 | |
super().__init__() | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [ | |
2**i for i in range(3, self.img_resolution_log2 + 1) | |
] | |
channels_dict = { | |
res: min(channel_base // res, channel_max) for res in self.block_resolutions | |
} | |
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) | |
self.foreword = SynthesisForeword( | |
img_channels=img_channels, | |
in_channels=min(channel_base // 4, channel_max), | |
z_dim=z_dim * 2, | |
resolution=4, | |
) | |
self.num_ws = self.img_resolution_log2 * 2 - 2 | |
for res in self.block_resolutions: | |
if res // 2 in channels_dict.keys(): | |
in_channels = channels_dict[res // 2] if res > 4 else 0 | |
else: | |
in_channels = min(channel_base // (res // 2), channel_max) | |
out_channels = channels_dict[res] | |
use_fp16 = res >= fp16_resolution | |
use_fp16 = False | |
is_last = res == self.img_resolution | |
block = SynthesisBlock( | |
in_channels, | |
out_channels, | |
w_dim=w_dim, | |
resolution=res, | |
img_channels=img_channels, | |
is_last=is_last, | |
use_fp16=use_fp16, | |
**block_kwargs, | |
) | |
setattr(self, f"b{res}", block) | |
def forward(self, x_global, mask, feats, ws, fname=None, **block_kwargs): | |
img = None | |
x, img = self.foreword(x_global, ws, feats, img) | |
for res in self.block_resolutions: | |
block = getattr(self, f"b{res}") | |
mod_vector0 = [] | |
mod_vector0.append(ws[:, int(np.log2(res)) * 2 - 5]) | |
mod_vector0.append(x_global.clone()) | |
mod_vector0 = torch.cat(mod_vector0, dim=1) | |
mod_vector1 = [] | |
mod_vector1.append(ws[:, int(np.log2(res)) * 2 - 4]) | |
mod_vector1.append(x_global.clone()) | |
mod_vector1 = torch.cat(mod_vector1, dim=1) | |
mod_vector_rgb = [] | |
mod_vector_rgb.append(ws[:, int(np.log2(res)) * 2 - 3]) | |
mod_vector_rgb.append(x_global.clone()) | |
mod_vector_rgb = torch.cat(mod_vector_rgb, dim=1) | |
x, img = block( | |
x, | |
mask, | |
feats, | |
img, | |
(mod_vector0, mod_vector1, mod_vector_rgb), | |
fname=fname, | |
**block_kwargs, | |
) | |
return img | |
class MappingNetwork(torch.nn.Module): | |
def __init__( | |
self, | |
z_dim, # Input latent (Z) dimensionality, 0 = no latent. | |
c_dim, # Conditioning label (C) dimensionality, 0 = no label. | |
w_dim, # Intermediate latent (W) dimensionality. | |
num_ws, # Number of intermediate latents to output, None = do not broadcast. | |
num_layers=8, # Number of mapping layers. | |
embed_features=None, # Label embedding dimensionality, None = same as w_dim. | |
layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim. | |
activation="lrelu", # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier=0.01, # Learning rate multiplier for the mapping layers. | |
w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.num_ws = num_ws | |
self.num_layers = num_layers | |
self.w_avg_beta = w_avg_beta | |
if embed_features is None: | |
embed_features = w_dim | |
if c_dim == 0: | |
embed_features = 0 | |
if layer_features is None: | |
layer_features = w_dim | |
features_list = ( | |
[z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] | |
) | |
if c_dim > 0: | |
self.embed = FullyConnectedLayer(c_dim, embed_features) | |
for idx in range(num_layers): | |
in_features = features_list[idx] | |
out_features = features_list[idx + 1] | |
layer = FullyConnectedLayer( | |
in_features, | |
out_features, | |
activation=activation, | |
lr_multiplier=lr_multiplier, | |
) | |
setattr(self, f"fc{idx}", layer) | |
if num_ws is not None and w_avg_beta is not None: | |
self.register_buffer("w_avg", torch.zeros([w_dim])) | |
def forward( | |
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False | |
): | |
# Embed, normalize, and concat inputs. | |
x = None | |
with torch.autograd.profiler.record_function("input"): | |
if self.z_dim > 0: | |
x = normalize_2nd_moment(z.to(torch.float32)) | |
if self.c_dim > 0: | |
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) | |
x = torch.cat([x, y], dim=1) if x is not None else y | |
# Main layers. | |
for idx in range(self.num_layers): | |
layer = getattr(self, f"fc{idx}") | |
x = layer(x) | |
# Update moving average of W. | |
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: | |
with torch.autograd.profiler.record_function("update_w_avg"): | |
self.w_avg.copy_( | |
x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta) | |
) | |
# Broadcast. | |
if self.num_ws is not None: | |
with torch.autograd.profiler.record_function("broadcast"): | |
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) | |
# Apply truncation. | |
if truncation_psi != 1: | |
with torch.autograd.profiler.record_function("truncate"): | |
assert self.w_avg_beta is not None | |
if self.num_ws is None or truncation_cutoff is None: | |
x = self.w_avg.lerp(x, truncation_psi) | |
else: | |
x[:, :truncation_cutoff] = self.w_avg.lerp( | |
x[:, :truncation_cutoff], truncation_psi | |
) | |
return x | |
class Generator(torch.nn.Module): | |
def __init__( | |
self, | |
z_dim, # Input latent (Z) dimensionality. | |
c_dim, # Conditioning label (C) dimensionality. | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output resolution. | |
img_channels, # Number of output color channels. | |
encoder_kwargs={}, # Arguments for EncoderNetwork. | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
synthesis_kwargs={}, # Arguments for SynthesisNetwork. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_channels = img_channels | |
self.encoder = EncoderNetwork( | |
c_dim=c_dim, | |
z_dim=z_dim, | |
img_resolution=img_resolution, | |
img_channels=img_channels, | |
**encoder_kwargs, | |
) | |
self.synthesis = SynthesisNetwork( | |
z_dim=z_dim, | |
w_dim=w_dim, | |
img_resolution=img_resolution, | |
img_channels=img_channels, | |
**synthesis_kwargs, | |
) | |
self.num_ws = self.synthesis.num_ws | |
self.mapping = MappingNetwork( | |
z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs | |
) | |
def forward( | |
self, | |
img, | |
c, | |
fname=None, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
**synthesis_kwargs, | |
): | |
mask = img[:, -1].unsqueeze(1) | |
x_global, z, feats = self.encoder(img, c) | |
ws = self.mapping( | |
z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff | |
) | |
img = self.synthesis(x_global, mask, feats, ws, fname=fname, **synthesis_kwargs) | |
return img | |
FCF_MODEL_URL = os.environ.get( | |
"FCF_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/add_fcf/places_512_G.pth", | |
) | |
FCF_MODEL_MD5 = os.environ.get("FCF_MODEL_MD5", "3323152bc01bf1c56fd8aba74435a211") | |
class FcF(InpaintModel): | |
name = "fcf" | |
min_size = 512 | |
pad_mod = 512 | |
pad_to_square = True | |
def init_model(self, device, **kwargs): | |
seed = 0 | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
kwargs = { | |
"channel_base": 1 * 32768, | |
"channel_max": 512, | |
"num_fp16_res": 4, | |
"conv_clamp": 256, | |
} | |
G = Generator( | |
z_dim=512, | |
c_dim=0, | |
w_dim=512, | |
img_resolution=512, | |
img_channels=3, | |
synthesis_kwargs=kwargs, | |
encoder_kwargs=kwargs, | |
mapping_kwargs={"num_layers": 2}, | |
) | |
self.model = load_model(G, FCF_MODEL_URL, device, FCF_MODEL_MD5) | |
self.label = torch.zeros([1, self.model.c_dim], device=device) | |
def is_downloaded() -> bool: | |
return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL)) | |
def __call__(self, image, mask, config: Config): | |
""" | |
images: [H, W, C] RGB, not normalized | |
masks: [H, W] | |
return: BGR IMAGE | |
""" | |
if image.shape[0] == 512 and image.shape[1] == 512: | |
return self._pad_forward(image, mask, config) | |
boxes = boxes_from_mask(mask) | |
crop_result = [] | |
config.hd_strategy_crop_margin = 128 | |
for box in boxes: | |
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config) | |
origin_size = crop_image.shape[:2] | |
resize_image = resize_max_size(crop_image, size_limit=512) | |
resize_mask = resize_max_size(crop_mask, size_limit=512) | |
inpaint_result = self._pad_forward(resize_image, resize_mask, config) | |
# only paste masked area result | |
inpaint_result = cv2.resize( | |
inpaint_result, | |
(origin_size[1], origin_size[0]), | |
interpolation=cv2.INTER_CUBIC, | |
) | |
original_pixel_indices = crop_mask < 127 | |
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][ | |
original_pixel_indices | |
] | |
crop_result.append((inpaint_result, crop_box)) | |
inpaint_result = image[:, :, ::-1] | |
for crop_image, crop_box in crop_result: | |
x1, y1, x2, y2 = crop_box | |
inpaint_result[y1:y2, x1:x2, :] = crop_image | |
return inpaint_result | |
def forward(self, image, mask, config: Config): | |
"""Input images and output images have same size | |
images: [H, W, C] RGB | |
masks: [H, W] mask area == 255 | |
return: BGR IMAGE | |
""" | |
image = norm_img(image) # [0, 1] | |
image = image * 2 - 1 # [0, 1] -> [-1, 1] | |
mask = (mask > 120) * 255 | |
mask = norm_img(mask) | |
image = torch.from_numpy(image).unsqueeze(0).to(self.device) | |
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) | |
erased_img = image * (1 - mask) | |
input_image = torch.cat([0.5 - mask, erased_img], dim=1) | |
output = self.model( | |
input_image, self.label, truncation_psi=0.1, noise_mode="none" | |
) | |
output = ( | |
(output.permute(0, 2, 3, 1) * 127.5 + 127.5) | |
.round() | |
.clamp(0, 255) | |
.to(torch.uint8) | |
) | |
output = output[0].cpu().numpy() | |
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return cur_res | |