Spaces:
Sleeping
Sleeping
from pathlib import Path | |
import cv2 | |
import pytest | |
import torch | |
from lama_cleaner.model_manager import ModelManager | |
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler | |
current_dir = Path(__file__).parent.absolute().resolve() | |
save_dir = current_dir / "result" | |
save_dir.mkdir(exist_ok=True, parents=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device = torch.device(device) | |
def get_data( | |
fx: float = 1, | |
fy: float = 1.0, | |
img_p=current_dir / "image.png", | |
mask_p=current_dir / "mask.png", | |
): | |
img = cv2.imread(str(img_p)) | |
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB) | |
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE) | |
img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA) | |
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST) | |
return img, mask | |
def get_config(strategy, **kwargs): | |
data = dict( | |
ldm_steps=1, | |
ldm_sampler=LDMSampler.plms, | |
hd_strategy=strategy, | |
hd_strategy_crop_margin=32, | |
hd_strategy_crop_trigger_size=200, | |
hd_strategy_resize_limit=200, | |
) | |
data.update(**kwargs) | |
return Config(**data) | |
def assert_equal( | |
model, | |
config, | |
gt_name, | |
fx: float = 1, | |
fy: float = 1, | |
img_p=current_dir / "image.png", | |
mask_p=current_dir / "mask.png", | |
): | |
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p) | |
print(f"Input image shape: {img.shape}") | |
res = model(img, mask, config) | |
cv2.imwrite( | |
str(save_dir / gt_name), | |
res, | |
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0], | |
) | |
""" | |
Note that JPEG is lossy compression, so even if it is the highest quality 100, | |
when the saved images is reloaded, a difference occurs with the original pixel value. | |
If you want to save the original images as it is, save it as PNG or BMP. | |
""" | |
# gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED) | |
# assert np.array_equal(res, gt) | |
def test_lama(strategy): | |
model = ModelManager(name="lama", device=device) | |
assert_equal( | |
model, | |
get_config(strategy), | |
f"lama_{strategy[0].upper() + strategy[1:]}_result.png", | |
) | |
fx = 1.3 | |
assert_equal( | |
model, | |
get_config(strategy), | |
f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png", | |
fx=1.3, | |
) | |
def test_ldm(strategy, ldm_sampler): | |
model = ModelManager(name="ldm", device=device) | |
cfg = get_config(strategy, ldm_sampler=ldm_sampler) | |
assert_equal( | |
model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png" | |
) | |
fx = 1.3 | |
assert_equal( | |
model, | |
cfg, | |
f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png", | |
fx=fx, | |
) | |
def test_zits(strategy, zits_wireframe): | |
model = ModelManager(name="zits", device=device) | |
cfg = get_config(strategy, zits_wireframe=zits_wireframe) | |
# os.environ['ZITS_DEBUG_LINE_PATH'] = str(current_dir / 'zits_debug_line.jpg') | |
# os.environ['ZITS_DEBUG_EDGE_PATH'] = str(current_dir / 'zits_debug_edge.jpg') | |
assert_equal( | |
model, | |
cfg, | |
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png", | |
) | |
fx = 1.3 | |
assert_equal( | |
model, | |
cfg, | |
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png", | |
fx=fx, | |
) | |
def test_mat(strategy, no_half): | |
model = ModelManager(name="mat", device=device, no_half=no_half) | |
cfg = get_config(strategy) | |
for _ in range(10): | |
assert_equal( | |
model, | |
cfg, | |
f"mat_{strategy.capitalize()}_result.png", | |
) | |
def test_fcf(strategy): | |
model = ModelManager(name="fcf", device=device) | |
cfg = get_config(strategy) | |
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=2, fy=2) | |
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=3.8, fy=2) | |
def test_cv2(strategy, cv2_flag, cv2_radius): | |
model = ModelManager( | |
name="cv2", | |
device=torch.device(device), | |
) | |
cfg = get_config(strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius) | |
assert_equal( | |
model, | |
cfg, | |
f"sd_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png", | |
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", | |
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", | |
) | |
def test_manga(strategy): | |
model = ModelManager( | |
name="manga", | |
device=torch.device(device), | |
) | |
cfg = get_config(strategy) | |
assert_equal( | |
model, | |
cfg, | |
f"sd_{strategy.capitalize()}.png", | |
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", | |
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", | |
) | |