import os os.system('cd ezocr;' 'pip install .; cd ..') import gradio as gr import pandas as pd from PIL import ImageDraw from easyocrlite import ReaderLite from PIL import Image from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.outputs import OutputKeys # step 1. orc detection to find boxes reader = ReaderLite(gpu=True) # step 2. recognize ocr result according to ocr detection results ocr_recognize = pipeline(Tasks.ocr_recognition, model='damo/ofa_ocr-recognition_general_base_zh', model_revision='v1.0.0') def get_images(img: str, reader: ReaderLite, **kwargs): results = reader.process(img, **kwargs) return results def draw_boxes(image, bounds, color='red', width=4): draw = ImageDraw.Draw(image) for i, bound in enumerate(bounds): p0, p1, p2, p3 = bound draw.text((p0[0]+5, p0[1]+5), str(i+1), fill=color, align='center') draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) return image def ofa_ocr_gr(): def ocr_api(img): results = get_images(img, reader, max_size=4000, text_confidence=0.7, text_threshold=0.4, link_threshold=0.4, slope_ths=0., add_margin=0.04) box_list, image_list = zip(*results) draw_boxes(img, box_list) ocr_result = [] for i, (box, image) in enumerate(zip(box_list, image_list)): image = Image.fromarray(image) result = ocr_recognize(image)[OutputKeys.TEXT][0].replace(" ", "") ocr_result.append([str(i + 1), result.replace(' ', '')]) result = pd.DataFrame(ocr_result, columns=['Box ID', 'Text']) return img, result, box_list ##返回box_list 方便微调模型 examples = [ "http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/qiaodaima.png", "http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/shupai.png", "http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/ocr_essay.jpg", "http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/chinese.jpg", "http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/benpao.jpeg", "http://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/gaidao.jpeg", ] title = "

基于OFA的OCR识别的应用

" description = '中文OCR体验区,欢迎上传图片,静待检测文字返回~ 相关OCR代码和模型都已在ModelScope开源,支持finetune,欢迎大家在平台上使用!(注:受资源限制,这里只部署了通用OCR模型。)' ocr_input_image = gr.components.Image(label='图片', type='pil') ocr_output_image = gr.components.Image(label='图片') ocr_output_text = gr.components.Dataframe(label='OCR结果', headers=['ID', '文本']) ocr_demo = gr.Interface( fn=ocr_api, inputs=[ocr_input_image], outputs=[ocr_output_image, ocr_output_text], title=title, description=description, allow_flagging='never', examples=examples, examples_per_page=5, cache_examples=False ) return ocr_api#返回子函数最后才能获取box ,至于ocr_demo这个gradio可有可无 if __name__ == "__main__": ocr_demo = ofa_ocr_gr() ocr_demo.launch( share=True, enable_queue=True, )