rohan13's picture
Upload app.py (#3)
2b0d36d
raw
history blame
10.8 kB
import asyncio
import glob
import os
import shutil
import time
import traceback
import pandas as pd
import utils
import gradio as gr
from dotenv import load_dotenv
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from csv_agent import CSVAgent
from grader import Grader
from grader_qa import GraderQA
from ingest import ingest_canvas_discussions
from utils import reset_folder
load_dotenv()
pickle_file = "vector_stores/canvas-discussions.pkl"
index_file = "vector_stores/canvas-discussions.index"
grading_model = 'gpt-4'
qa_model = 'gpt-4'
llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
grader = None
grader_qa = None
disabled = gr.update(interactive=False)
enabled = gr.update(interactive=True)
def add_text(history, text):
print("Question asked: " + text)
response = run_model(text)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text):
global grader, grader_qa
start_time = time.time()
print("start time:" + str(start_time))
try:
response = grader_qa.agent.run(text)
except Exception as e:
response = "I need a break. Please ask me again in a few minutes"
print(traceback.format_exc())
sources = []
# for document in response['source_documents']:
# sources.append(str(document.metadata))
source = ','.join(set(sources))
# response = response['answer'] + '\nSources: ' + str(len(sources))
end_time = time.time()
# # If response contains string `SOURCES:`, then add a \n before `SOURCES`
# if "SOURCES:" in response:
# response = response.replace("SOURCES:", "\nSOURCES:")
response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print(sources)
print("Time taken: " + str(end_time - start_time))
return response
def set_model(history):
history = get_first_message(history)
return history
def ingest(url, canvas_api_key, history):
global grader, llm, embeddings
text = f"Downloaded discussion data from {url} to start grading"
ingest_canvas_discussions(url, canvas_api_key)
grader = Grader(grading_model)
response = "Ingested canvas data successfully"
history = history + [(text, response)]
return history, disabled, disabled, disabled, enabled
def start_grading(history):
global grader, grader_qa
text = f"Start grading discussions from {url}"
if grader:
# if grader.llm.model_name != grading_model:
# grader = Grader(grading_model)
# Create a new event loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Use the event loop to run the async function
loop.run_until_complete(grader.run_chain())
grader_qa = GraderQA(grader, embeddings)
response = "Grading done"
finally:
# Close the loop after use
loop.close()
else:
response = "Please ingest data before grading"
history = history + [(text, response)]
return history, disabled, enabled, enabled, enabled
def start_downloading():
# files = glob.glob("output/*.csv")
# if files:
# file = files[0]
# return gr.outputs.File(file)
# else:
# return "File not found"
print(grader.csv)
return grader.csv, gr.update(visible=True), gr.update(value=process_csv_text(), visible=True)
def get_headers():
df = process_csv_text()
return list(df.columns)
def get_first_message(history):
global grader_qa
history = [(None,
'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')]
return get_grading_status(history)
def get_grading_status(history):
global grader, grader_qa
# Check if grading is complete
if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len(
glob.glob("docs/*.html")) > 0:
if not grader:
grader = Grader(qa_model)
grader_qa = GraderQA(grader, embeddings)
elif not grader_qa:
grader_qa = GraderQA(grader, embeddings)
if len(history) == 1:
history = history + [(None, 'Grading is already complete. You can now ask questions')]
enable_fields(False, False, False, False, True, True, True)
# Check if data is ingested
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
if not grader_qa:
grader = Grader(qa_model)
if len(history) == 1:
history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')]
enable_fields(False, False, False, True, True, False, False)
else:
history = history + [(None, 'Please ingest data and start grading')]
enable_fields(True, True, True, False, False, False, False)
return history
# handle enable/disable of fields
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status,
download_status, chatbot_txt_status, chatbot_btn_status):
url.interactive = url_status
canvas_api_key.interactive = canvas_api_key_status
submit.interactive = submit_status
grade.interactive = grade_status
download.interactive = download_status
txt.interactive = chatbot_txt_status
ask.interactive = chatbot_btn_status
if not chatbot_txt_status:
txt.placeholder = "Please grade discussions first"
else:
txt.placeholder = "Ask a question"
if not url_status:
url.placeholder = "Data already ingested"
if not canvas_api_key_status:
canvas_api_key.placeholder = "Data already ingested"
def reset_data():
# Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history
global grader, grader_qa
#If there's data in docs/output folder during grading
if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len(
glob.glob("docs/*.html")) > 0:
reset_folder('output')
reset_folder('docs')
grader = None
grader_qa = None
history = [(None, 'Data reset successfully')]
return history
# If there's data in docs folder
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
reset_folder('docs')
history = [(None, 'Data reset successfully')]
return history
#If there's data in vector_stores folder
elif len(glob.glob("vector_stores/*.faiss")) > 0 or len(glob.glob("vector_stores/*.pkl")) > 0:
reset_folder('vector_stores')
history = [(None, 'Data reset successfully')]
return history
def get_output_dir(orig_name):
script_dir = os.path.dirname(os.path.abspath(__file__))
output_dir = os.path.join(script_dir, 'output', orig_name)
return output_dir
def upload_grading_results(file, history):
global grader, grader_qa
# Delete output folder and save the file in output folder
if os.path.isdir('output'):
shutil.rmtree('output')
os.mkdir('output')
if os.path.isdir('vector_stores'):
shutil.rmtree('vector_stores')
os.mkdir('vector_stores')
# get current path
path = os.path.join("output", os.path.basename(file.name))
# Copy the uploaded file from its temporary location to the desired location
shutil.copyfile(file.name, path)
grader_qa = CSVAgent(llm, embeddings, path)
history = [(None, 'Grading results uploaded successfully. Start Chatting!')]
return history
def bot(history):
return history
def process_csv_text():
file_path = utils.get_csv_file_name()
df = pd.read_csv(file_path)
return df
with gr.Blocks() as demo:
gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>")
with gr.Row():
url = gr.Textbox(
label="Canvas Discussion URL",
placeholder="Enter your Canvas Discussion URL"
)
canvas_api_key = gr.Textbox(
label="Canvas API Key",
placeholder="Enter your Canvas API Key", type="password"
)
submit = gr.Button(value="Submit", variant="secondary", )
with gr.Row():
table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True)
with gr.Row():
grade = gr.Button(value="Grade", variant="secondary")
download = gr.Button(value="Download", variant="secondary")
file = gr.components.File(label="CSV Output", container=False, visible=False).style(height=100)
reset = gr.Button(value="Reset", variant="secondary")
chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400)
with gr.Row():
with gr.Column(scale=3):
txt = gr.Textbox(
label="Ask questions about how students did on the discussion",
placeholder="Enter text and press enter, or upload an image", lines=1
)
upload = gr.UploadButton(label="Upload grading results", type="file", file_types=["csv"], scale=0.5)
ask = gr.Button(value="Ask", variant="secondary", scale=1)
chatbot.value = get_first_message([])
with gr.Row():
table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True)
submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot, url, canvas_api_key, submit, grade],
postprocess=False).then(
bot, chatbot, chatbot
)
grade.click(start_grading, inputs=[chatbot], outputs=[chatbot, grade, download, txt, ask],
postprocess=False).then(
bot, chatbot, chatbot
)
download.click(start_downloading, inputs=[], outputs=[file, file, table]).then(
bot, chatbot, chatbot
)
txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then(
bot, chatbot, chatbot
)
ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False, ).then(
bot, chatbot, chatbot
)
reset.click(reset_data, inputs=[], outputs=[], postprocess=False, show_progress=True, ).success(
bot, chatbot, chatbot)
upload.upload(upload_grading_results, inputs=[upload, chatbot], outputs=[chatbot], postprocess=False, ).then(
bot, chatbot, chatbot)
if __name__ == "__main__":
demo.queue()
demo.queue(concurrency_count=5)
demo.launch(debug=True, )