import asyncio import glob import os import shutil import time import traceback import pandas as pd import utils import gradio as gr from dotenv import load_dotenv from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from csv_agent import CSVAgent from grader import Grader from grader_qa import GraderQA from ingest import ingest_canvas_discussions from utils import reset_folder load_dotenv() pickle_file = "vector_stores/canvas-discussions.pkl" index_file = "vector_stores/canvas-discussions.index" grading_model = 'gpt-4' qa_model = 'gpt-4' llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True) embeddings = OpenAIEmbeddings(model='text-embedding-ada-002') grader = None grader_qa = None disabled = gr.update(interactive=False) enabled = gr.update(interactive=True) def add_text(history, text): print("Question asked: " + text) response = run_model(text) history = history + [(text, response)] print(history) return history, "" def run_model(text): global grader, grader_qa start_time = time.time() print("start time:" + str(start_time)) try: response = grader_qa.agent.run(text) except Exception as e: response = "I need a break. Please ask me again in a few minutes" print(traceback.format_exc()) sources = [] # for document in response['source_documents']: # sources.append(str(document.metadata)) source = ','.join(set(sources)) # response = response['answer'] + '\nSources: ' + str(len(sources)) end_time = time.time() # # If response contains string `SOURCES:`, then add a \n before `SOURCES` # if "SOURCES:" in response: # response = response.replace("SOURCES:", "\nSOURCES:") response = response + "\n\n" + "Time taken: " + str(end_time - start_time) print(response) print(sources) print("Time taken: " + str(end_time - start_time)) return response def set_model(history): history = get_first_message(history) return history def ingest(url, canvas_api_key, history): global grader, llm, embeddings text = f"Downloaded discussion data from {url} to start grading" ingest_canvas_discussions(url, canvas_api_key) grader = Grader(grading_model) response = "Ingested canvas data successfully" history = history + [(text, response)] return history, disabled, disabled, disabled, enabled def start_grading(history): global grader, grader_qa text = f"Start grading discussions from {url}" if grader: # if grader.llm.model_name != grading_model: # grader = Grader(grading_model) # Create a new event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: # Use the event loop to run the async function loop.run_until_complete(grader.run_chain()) grader_qa = GraderQA(grader, embeddings) response = "Grading done" finally: # Close the loop after use loop.close() else: response = "Please ingest data before grading" history = history + [(text, response)] return history, disabled, enabled, enabled, enabled def start_downloading(): # files = glob.glob("output/*.csv") # if files: # file = files[0] # return gr.outputs.File(file) # else: # return "File not found" print(grader.csv) return grader.csv, gr.update(visible=True), gr.update(value=process_csv_text(), visible=True) def get_headers(): df = process_csv_text() return list(df.columns) def get_first_message(history): global grader_qa history = [(None, 'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')] return get_grading_status(history) def get_grading_status(history): global grader, grader_qa # Check if grading is complete if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len( glob.glob("docs/*.html")) > 0: if not grader: grader = Grader(qa_model) grader_qa = GraderQA(grader, embeddings) elif not grader_qa: grader_qa = GraderQA(grader, embeddings) if len(history) == 1: history = history + [(None, 'Grading is already complete. You can now ask questions')] enable_fields(False, False, False, False, True, True, True) # Check if data is ingested elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")): if not grader_qa: grader = Grader(qa_model) if len(history) == 1: history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')] enable_fields(False, False, False, True, True, False, False) else: history = history + [(None, 'Please ingest data and start grading')] enable_fields(True, True, True, False, False, False, False) return history # handle enable/disable of fields def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status, download_status, chatbot_txt_status, chatbot_btn_status): url.interactive = url_status canvas_api_key.interactive = canvas_api_key_status submit.interactive = submit_status grade.interactive = grade_status download.interactive = download_status txt.interactive = chatbot_txt_status ask.interactive = chatbot_btn_status if not chatbot_txt_status: txt.placeholder = "Please grade discussions first" else: txt.placeholder = "Ask a question" if not url_status: url.placeholder = "Data already ingested" if not canvas_api_key_status: canvas_api_key.placeholder = "Data already ingested" def reset_data(): # Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history global grader, grader_qa #If there's data in docs/output folder during grading [During Grading] if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 or len(glob.glob("docs/*.json")) > 0 or len( glob.glob("docs/*.html")) > 0 or len(glob.glob("vector_stores/*.faiss")) > 0 or len(glob.glob("vector_stores/*.pkl")) > 0: reset_folder('output') reset_folder('docs') reset_folder('vector_stores') grader = None grader_qa = None history = [(None, 'Data reset successfully')] url.placeholder = [(None, 'Enter your Canvas Discussion URL')] canvas_api_key.placeholder = [(None, 'Enter your Canvas API Key')] return history, enabled, enabled, enabled, disabled, disabled, disabled, disabled, disabled, disabled, disabled, disabled def get_output_dir(orig_name): script_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(script_dir, 'output', orig_name) return output_dir def upload_grading_results(file, history): global grader, grader_qa # Delete output folder and save the file in output folder if os.path.isdir('output'): shutil.rmtree('output') os.mkdir('output') if os.path.isdir('vector_stores'): shutil.rmtree('vector_stores') os.mkdir('vector_stores') # get current path path = os.path.join("output", os.path.basename(file.name)) # Copy the uploaded file from its temporary location to the desired location shutil.copyfile(file.name, path) grader_qa = CSVAgent(llm, embeddings, path) history = [(None, 'Grading results uploaded successfully. Start Chatting!')] return history def bot(history): return history def process_csv_text(): file_path = utils.get_csv_file_name() df = pd.read_csv(file_path) return df with gr.Blocks() as demo: gr.Markdown(f"

{'Canvas Discussion Grading With Feedback'}

") with gr.Row(): url = gr.Textbox( label="Canvas Discussion URL", placeholder="Enter your Canvas Discussion URL" ) canvas_api_key = gr.Textbox( label="Canvas API Key", placeholder="Enter your Canvas API Key", type="password" ) submit = gr.Button(value="Submit", variant="secondary", ) with gr.Row(): table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True) with gr.Row(): grade = gr.Button(value="Grade", variant="secondary") download = gr.Button(value="Download", variant="secondary") file = gr.components.File(label="CSV Output", container=False, visible=False).style(height=100) reset = gr.ClearButton(value="Reset") chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400) with gr.Row(): with gr.Column(scale=3): txt = gr.Textbox( label="Ask questions about how students did on the discussion", placeholder="Enter text and press enter, or upload an image", lines=1 ) upload = gr.UploadButton(label="Upload grading results", type="file", file_types=["csv"], scale=0.5) ask = gr.Button(value="Ask", variant="secondary", scale=1) chatbot.value = get_first_message([]) with gr.Row(): table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True) submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot, url, canvas_api_key, submit, grade], postprocess=False).then( bot, chatbot, chatbot ) grade.click(start_grading, inputs=[chatbot], outputs=[chatbot, grade, download, txt, ask], postprocess=False).then( bot, chatbot, chatbot ) download.click(start_downloading, inputs=[], outputs=[file, file, table]).then( bot, chatbot, chatbot ) txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then( bot, chatbot, chatbot ) ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False, ).then( bot, chatbot, chatbot ) reset.click(reset_data, inputs=[], outputs=[chatbot, url, canvas_api_key, submit, table, grade, download, txt, file, upload, ask]).success( bot, chatbot, chatbot) upload.upload(upload_grading_results, inputs=[upload, chatbot], outputs=[chatbot], postprocess=False, ).then( bot, chatbot, chatbot) if __name__ == "__main__": demo.queue() demo.queue(concurrency_count=5) demo.launch(debug=True, )