File size: 2,004 Bytes
a19a290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from infer.lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM

if __name__ == "__main__":
    MoeVS = True  # 模型是否为MoeVoiceStudio(原MoeSS)使用

    ModelPath = "Shiroha/shiroha.pth"  # 模型路径
    ExportedPath = "model.onnx"  # 输出路径
    hidden_channels = 256  # hidden_channels,为768Vec做准备
    cpt = torch.load(ModelPath, map_location="cpu")
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    print(*cpt["config"])

    test_phone = torch.rand(1, 200, hidden_channels)  # hidden unit
    test_phone_lengths = torch.tensor([200]).long()  # hidden unit 长度(貌似没啥用)
    test_pitch = torch.randint(size=(1, 200), low=5, high=255)  # 基频(单位赫兹)
    test_pitchf = torch.rand(1, 200)  # nsf基频
    test_ds = torch.LongTensor([0])  # 说话人ID
    test_rnd = torch.rand(1, 192, 200)  # 噪声(加入随机因子)

    device = "cpu"  # 导出时设备(不影响使用模型)

    net_g = SynthesizerTrnMsNSFsidM(
        *cpt["config"], is_half=False
    )  # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
    net_g.load_state_dict(cpt["weight"], strict=False)
    input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
    output_names = [
        "audio",
    ]
    # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
    torch.onnx.export(
        net_g,
        (
            test_phone.to(device),
            test_phone_lengths.to(device),
            test_pitch.to(device),
            test_pitchf.to(device),
            test_ds.to(device),
            test_rnd.to(device),
        ),
        ExportedPath,
        dynamic_axes={
            "phone": [1],
            "pitch": [1],
            "pitchf": [1],
            "rnd": [2],
        },
        do_constant_folding=False,
        opset_version=16,
        verbose=False,
        input_names=input_names,
        output_names=output_names,
    )